Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

171 EFFECT OF LONG-TERM TRANSPORTATION OF OVARIES ON THE DEVELOPMENT OF IN VITRO-PRODUCED BOVINE EMBRYOS

M. Nakatate A , K. Tsuchiya A , I. Adachi A , K. Takahashi B , A. Aisan A , A. Sugulle A , O. Dochi A and H. Koyama A
+ Author Affiliations
- Author Affiliations

A Rakuno Gakuen University, Ebetsu, Hokkaido, Japan

B Genetics Hokkaido, Shimizu, Hokkaido, Japan

Reproduction, Fertility and Development 18(2) 193-193 https://doi.org/10.1071/RDv18n2Ab171
Published: 14 December 2005

Abstract

The transportation of bovine ovaries would allow the shipment of oocytes for research purposes after the slaughter of valuable cows. The objective of this study was to investigate the effect of long-term transportation of ovaries on the development of in vitro-produced bovine embryos. After collection of the ovaries from a slaughterhouse, they were placed inside a thermos flask and transported to the laboratory. The thermos flask was covered with a freezer pack in a foam polystyrene box. The transportation time was 17–18 h, and the temperature of the thermos flask changed from 20°C to 28°C (average 23.8°C) during the transportation. Cumulus–oocyte complexes (COCs) were collected by the aspiration of follicles with a diameter of 2–6 mm. The COCs were matured for 20 h in IVMD101 (RIFP: Research Institute for the Functional Peptides, Yamagata, Japan) containing DM199 supplemented with 5.56 mM glucose, 0.91 mM pyruvate, 5 mM taurine, 5 mM selenium, 5 mM HEPES, and 10 µg/mL gentamicin at 38.5°C under an atmosphere of 5% CO2 in air (Hoshi 2003 Theriogenology 59, 675–685). The matured COCs were inseminated with 5 × 106 sperm/mL in IVF100 (RIFP) medium comprising a modified BO medium supplemented with 1.25 mM sodium pyruvate, 0.5 mM cysteine, 5 mg/mL BSA, 7.5 µg/mL sodium heparin, 5 mM caffeine, and 10 µg/mL gentamicin. After 6 h of gamete co-culture, the presumed zygotes were cultured in IVD101 (RIFP) medium comprising DM199, 2.48 mM lactate, 0.27 mM pyruvate, and 2.22 mM of glucose for 9 days at 38.5°C under an atmosphere of 5% CO2, 5% O2, and 90% N2 in air. As controls, bovine ovaries were transported to the laboratory within 1–1.5 h. Embryo development was evaluated based on the cleavage rate, blastocyst rate, and total number of cells on Days 7–9 after in vitro fertilization. The experiment was replicated five times, and data were analyzed by chi-square test and ANOVA. Results are presented in Table 1. There were no differences in the cleavage rate between the treatments. The blastocyst rate and the number of cells in the blastocyst after long-term transportation of ovaries were significantly lower than those in the controls. These results suggest that the long-term transportation of bovine ovaries does not affect on the cleavage; however, the blastocyst rate and the quality of blastocysts may be affected. Therefore, additional experiments are required to determine suitable conditions for long-term transportation of bovine ovaries.


Table 1. Effect of long-term transportation of ovaries on the development of bovine IVM/IVF embryos
Click to zoom