Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

67 EFFECTS OF ANTIOXIDANTS LACTOFERRIN AND CATALASE ON STALLION FROZEN SEMEN

H. S. Martins A , M. F. Brito A , I. B. M. Sampaio A , R. Stahlberg B , M. R. Souza A , C. F. A. M. Penna A and M. A. Lagares A
+ Author Affiliations
- Author Affiliations

A Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

B Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Reproduction, Fertility and Development 27(1) 126-127 https://doi.org/10.1071/RDv27n1Ab67
Published: 4 December 2014

Abstract

During cryopreservation, the sperm were submitted to an increased generation of reactive oxygen species. Furthermore, because of the large portion of seminal plasma removal, there is a decrease of sperm antioxidant protection. Addition of antioxidants proteins found in seminal plasma, such as lactoferrin (Lf) and catalase (Cat), to the freezing semen extenders could protect the sperm during cryopreservation. Lactoferrin is a transferrin, which prevents the hydroxyl radicals generation, and Cat plays an antioxidant role. The aim of this study was to determine the effects of Lf and Cat supplementation to the INRA 82 freezing extender (Battelier et al. 1997) on sperm motility parameters and membrane functionality of stallion frozen semen. Semen from 6 stallions was collected with an artificial vagina, diluted with Kenney extender (1 : 1), and centrifuged (500 × g, 10 min). The supernatant was discarded, and sperm number per milliliter was calculated. Semen was resuspended with 3 extenders to 100 × 106 sperm mL–1. The treatments were distributed in (F1) control, INRA 82 freezing extender (Battelier et al. 1997), (F2) F1+ 500 μg mL–1 lactoferrin, and F3) F1 + 200 IU mL–1 catalase. Semen samples were packaged in 0.5-mL straws and cooled to 5°C (0.27°C min–1). For semen freezing, the straws were laid over the LN vapor for 20 min and plunged into the LN. The straws were thawed at 37°C for 30 s. Motility parameters of frozen semen were determined using a computer sperm cell analysis, and sperm membrane functionality was assessed by the hyposmotic swelling test (Lagares et al. 1998). The data were analysed using Friedman test using stallion as a block. A probability of P < 0.05 was considered significant. There was no significant difference between the percentage of total sperm motility (median, minimum-maximum value; F1: 29.9, 11.0–82.7; F2: 49.8, 7.7–55.2; F3: 39.8, 5.7–92) and progressive sperm motility (F1: 7.1, 3.2–23.3; F2: 13.4, 2.6-22.4; F3: 15.6, 1.1–29.6), and functional sperm membrane (F1: 26.7, 14.7–56.2; F2: 50.5, 15.7–61.7; F3: 46.6, 13.8–50.9) with regard to the treatment. However, the velocity parameters: velocity average path (F1: 29.3, 22.1–33.80; F2: 34.6, 24.8–44; F3: 35.7, 18.2–42.6), velocity curvilinear (F1: 36.9, 30.5–45.1; F2: 42.5, 34.7–51; F3: 44.6, 25.5–50.9), and velocity straight line (F1: 23.4, 17–3.60; F2: 28.9, 18.8–38.2; F3: 26.6, 13.6–37.2) in the treatment with Lf (F2) were higher compared with the control (F1; P < 0.05). These results corroborate with studies reporting the lack of positive effect on equine sperm motility when antioxidants were added to skim milk-based extenders. Although the addition of Lf or Cat to skim milk-based extenders did not improve the motility sperm characteristics and sperm membrane functionality, more studies about the positive effect of Lf on the velocity parameters are necessary. Lactoferrin could then play an important role on the oxidative metabolism, which provides energy to the sperm movement.

Acknowledgments to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, for the financial support.