Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

325 CHARACTERIZATION OF PRIMED PORCINE PLURIPOTENT STEM CELL LINES DERIVED FROM VARIOUS ORIGINS INCLUDING iPS-NT

E. Kim A , C.-K. Lee B and S.-H. Hyun A
+ Author Affiliations
- Author Affiliations

A Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea;

B Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Korea

Reproduction, Fertility and Development 27(1) 251-251 https://doi.org/10.1071/RDv27n1Ab325
Published: 4 December 2014

Abstract

Pigs are significant as a disease model in translational research. However, authentic porcine embryonic stem cells (ESC) have not yet been established showing limited capacities until now. In this study, a total of 7 primed ESC lines were derived from porcine embryos of various origins, including in vitro-fertilized (IVF), parthenogenetic activation (PA), and nuclear transfer (iPS-NT) from a donor cell with induced pluripotent stem cells (iPSC). We observed typical morphology, intensive alkaline phosphatase activity, and normal karyotype in all pESC lines. Also, the expression of pluripotency markers such as OCT4, Sox2, NANOG, SSEA4, TRA 1–60, and TRA 1–81 was shown in our pESC. We investigated expression of key markers of lineage commitment to confirm the differentiation potentials of the 7 cell lines to formation of EB and all 3 germ layers, such as AFP (endoderm), DESMIN (mesoderm), and CRABP2 (ectoderm) by RT-PCR and Cytokeratin 17 (endoderm), Desmin (mesoderm), and Vimentin (ectoderm) by immunofluorescence analysis. We also examined the XIST gene expression and nuclear H3K27me3 foci from all female cell lines for analysing epigenetic characteristics. Furthermore, we classified 2 colony types (normal and transformed colony) and 3 subpopulations of ES cells composed of transformed colonies with intrinsic morphological characteristics: petaloid rapidly self-renewing cells, small spindle-shaped cells, and large flattened cells. This result will help to approach the goal for establishing authentic naive pluripotent stem cells in pigs and it will make possible sophisticated genetic manipulation to create ideal animal models for preclinical research and studies of human diseases.

This work was supported, in part, by a grant from the National Research Foundation of Korea Grant Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.