Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

336 MEIOTIC DEVELOPMENT AND CORTICAL GRANULES DISTRIBUTION IN CANINE OOCYTES DURING IN VITRO MATURATION

M. De los Reyes A , D. Luna A and J. Palomino A
+ Author Affiliations
- Author Affiliations

University of Chile, Santiago, Chile

Reproduction, Fertility and Development 22(1) 324-325 https://doi.org/10.1071/RDv22n1Ab336
Published: 8 December 2009

Abstract

Low development of IVM canine oocytes could be in part attributed to an impaired cytoplasmic maturation. In mammalian oocytes, migration and the redistribution of cortical granules (CGs) around the periphery of the oocyte contribute to the inhibition of polyspermy and it is an important criterion to evaluate cytoplasmic maturation. The state of nuclear maturation and the distribution of CGs were evaluated in canine oocytes cultured for different periods in order to compare the synchrony of nuclear and cytoplasmic maturation during in vitro maturation. Bitch ovaries at different stages of the estrous cycle were obtained following ovariectomy. COCs with compact cumulus cells showing a homogeneous cytoplasm were selected for experiments. Thirty-six COCs were processed at immature stage, placed in PBS medium until evaluation. A total of 275 COCs were matured in vitro for 48, 72, and 96 h in TCM-199 with Earle’s salt supplemented with 25 mM Hepes, 10% FCS, 0.25 mM pyruvate, 10 IU mL-1 of hCG, 300 IU mL-1 penicillin, and 20 mg mL-1 streptomycin, at 38.5°C and 5% CO2. At each culture period, the oocytes were stained with Lens culinaris agglutinin (LCA), labeled with fluorescein isothiocyanate, and the CGs distributions were examined under a fluorescent microscope. The nuclear status of the denuded oocytes was determined by DAPI staining under a fluorescence microscope. For each treatment, at least four replicates were performed and the data was analyzed by ANOVA using Tukey’s test to determine the differences P < 0.05. Three types of CGs distribution were distinguished during canine oocyte maturation: (1) homogeneous distribution throughout the cytoplasm including the cortex; (2) heterogeneous (clusters) within the cytoplasm and (3) densely distributed beneath the oolemma. Nuclear stages were classified as immature or germinal vesicle (GV) stage; resumption of meiosis or germinal vesicle break down (GVBD); metaphase I to telophase I (MI toTel I); and mature or second metaphase (MII). The distribution patterns of GCs were different (P < 0.05) among oocytes cultured for different periods and the nuclear maturation status also differed between oocytes cultured for different intervals (P < 0.05). Most (>84%) of the immature oocytes at GV showed a uniform distribution of CGs throughout the cytoplasm. At 48 h of culture, CGs distribution was mainly Type 2 (25%) and 3 (61%) and the oocytes were at GVBD (33%) and MI-Tel I (33%) stages. Most nuclei of the type 3 oocytes were in the MI (40%) and MII (11%) stages, corresponding to those oocytes matured for 72 (88%) or 96 h (71%). These results indicate that canine oocytes migrate to the cortex during IVM and this process is not finished before 72 h of culture. In addition, although the re-distribution of the CGs occurred in parallel with nuclear maturation, the oocytes cannot always proceed to the MII stage; however, in such oocytes the CGs are distributed beneath the oolemma.

Supported by Grant FONDECYT 1080618.