Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

47 EFFECT OF THE TYPE OF CYTOPLASTS, SOURCE OF KARYOPLASTS, AND ACTIVATION PROCESS ON IN VITRO DEVELOPMENT OF BOVINE CLONE EMBRYOS

L. U. Ohlweiler A , J. C. Mezzalira A , R. P. C. Gerger A C , E. S. Ribeiro A , F. Forell A , L. R. Bertolini A , J. L. Rodrigues B , C. E. Ambrósio C , M. A. Miglino C , A. D. Vieira A , A. Mezzalira A and M. Bertolini A
+ Author Affiliations
- Author Affiliations

A Center of Agroveterinarian Sciences, Santa Catarina State University, Lages, SC, Brazil;

B FAVET, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil;

C FMVZ, University of São Paulo, São Paulo, SP, Brazil

Reproduction, Fertility and Development 21(1) 123-124 https://doi.org/10.1071/RDv21n1Ab47
Published: 9 December 2008

Abstract

As the recipient cytoplast plays a key role in nuclear reprogramming after somatic cell nuclear transfer (SCNT), the aim of this study was to compare the type of cytoplast/karyoplast [metaphase II (MII) oocyte, early zygote, somatic cells] and the chemical (CA) or sperm-mediated/spontaneous activation (SA) on in vitro development of bovine SCNT embryos produced by handmade cloning (HMC). After 17 h of in vitro maturation, a group of cumulus–oocyte complexes (COCs, n = 945) was manually bisected following zona removal and segregated as enucleated (MII hemi-Cyt) or non-enucleated (MII hemi-Kar). Another group of COCs was in vitro-fertilized, and, 4 h after the onset of IVF, zona-free zygotes with 2 polar bodies (n = 490) were manually bisected under fluorescent light to obtain IVF hemi-Cyt and IVF hemi-Kar. A somatic cell (SC) culture from an adult cow was used for HMC procedures (SC Kar). In 5 replications, experimental groups were composed of: zona-intact MII oocytes (parthenote control, PG); zona-intact zygotes (IVF control); MII Cyt + MII Cyt + SC Kar (SCNT control); IVF Cyt + MII Cyt + SC Kar (G1); MII Cyt + IVF Kar (G2); IVF Cyt + IVF Kar (G3); IVF Cyt + IVF Cyt + SC Kar (G4); and MII Cyt + MII Kar (G5). Following reconstruction and electrofusion, groups G1 to G5 were further divided into 2 sub-groups each, 1 being chemically activated (ionomycin/6-DMAP) along with the control groups PG and SCNT, whereas the others were cultured to verify sperm-mediated (G1 to G4) or spontaneous (G5) activation. Embryos were in vitro-cultured in the WOW system for 7 days. Cleavage (Day 2) and blastocyst (Day 7) rates were compared by the chi-square and Fisher tests, respectively. Cleavage rates in G1-SA, G2-SA, and G3-SA were lower than in their CA counterparts, which were similar to controls (Table 1). Such decrease in cleavage in G1-SA and G2-SA may be caused by the manipulation process rather than by sperm-mediation, since the observed rates were very similar to the G5-SA group. Cleavage in G3 and G4 were also similar to controls, most likely due to the fusion of 2 sperm-activated IVF hemi-Cyt. Blastocyst rates were generally higher in CA than in SA sub-groups except for G4, for which SA benefited from 2 sperm-activated cytoplasts. The lower blastocyst yield in SA sub-groups may reflect at least 2 possible mechanisms: an increased level of heteroplasmy (G1 and G2), potentially caused by an insufficient sperm-activated IVF hemi-Cyt or by a blocking effect imposed by the M-phase-derived hemi-Cyt, and/or a disruption in karyokinetic events caused by the manipulation in sperm-activated IVF hemi-Kar (G2 and G3). In G4, both mechanisms were probably attenuated by the use of 2 sperm-activated IVF hemi-Cyt and a SC-kar, analogous to conditions in the SCNT and G5 groups.


Table 1.  Effect of cytoplast type and activation process on in vitro development of bovine SCNT embryos
T1

This study was supported by a grant from CAPES/Brazil.