Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

145 THE METHYLATION PATTERNS OF POTENTIAL DIFFERENTIALLY METHYLATED REGIONS IN BOVINE Xist, Impact, NDN, AND H19 GENES

N. T. D'Cruz, K. J. Wilson and M. K. Holland

Reproduction, Fertility and Development 19(1) 190 - 190
Published: 12 December 2006

Abstract

Clinical and laboratory-assisted reproductive techniques such as ICSI have recently been associated with an increased incidence of several syndromes associated with defects in genomic imprinting. Genomically imprinted genes are expressed from only one parental allele and act to regulate growth of the fetus and placenta and brain development/ function. Imprinted genes are controlled by differentially methylated regions (DMRs), whereby one parental allelle (i.e. either maternal or paternal) is epigenetically silenced via methylation. Studies conducted in vitro suggest that culture of embryos and embryo manipulations may perturb the imprinting process. In the current study, the genomic DNA methylation patterns of CpG islands within bovine H19 (27 CpGs analyzed), Impact (36 CpGs), NDN (22 CpGs), and Xist (21 CpGs) were analyzed by bisulfite sequencing. Genomic DNA from a female fibroblast cell line and sperm were chosen for analysis. Potential DMRs for the 4 genes were identified, and semi-nested PCR primers were designed surrounding those regions. Second-round PCR products (2 separate reactions) were mixed, subcloned, and sequenced (n ≥ 10). The fibroblast methylation pattern of the Xist DMR showed consistent methylation in 50% of sequenced clones, with no methylation observed in sperm. The H19 DMR in fibroblast DNA also showed consistent methylation in 25% of sequenced clones, with sperm DNA fully methylated. These results confirm previous studies showing that Xist and H19 are imprinted in cattle. Sequencing of the putative Impact DMR clones indicated no methylation in either cell type, suggesting no imprinting in cattle, tissue-specific imprinting, or that this CpG island (15 bp post ATG) is not the DMR that controls imprinted expression of the Impact gene. The NDN DMR (500 bp post ATG) in sperm was not methylated, whereas the fibroblast cells had a variable methylation pattern. This may be for the same reasons suggested for Impact, but the variability within the CpG island may also be due to in vitro culture conditions resulting in aberrant methylation. This possible culture effect is currently being confirmed through bisulfite sequencing of the gene in an adult tissue. The investigation of methylation patterns in oocytes is also underway. Together, the information gathered will be used to determine the imprinting status of several bovine genes and, in the future, whether any of these imprinted genes are responsible for the increased pregnancy loss and calf abnormalities associated with advanced reproductive technologies.

https://doi.org/10.1071/RDv19n1Ab145

© CSIRO 2006

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email