102 RABBIT CLONING: HISTONE ACETYLATION STATUS OF DONOR CELLS AND CLONED EMBRYOS
V. Zakhartchenko, F. Yang, R. Hao and E. Wolf
Reproduction, Fertility and Development
19(1) 168 - 168
Published: 12 December 2006
Abstract
Epigenetic status of the genome of a donor nucleus is likely to be associated with the developmental potential of cloned embryos produced by somatic cell nuclear transfer (SCNT). Prevention of epigenetic errors by manipulation of the epigenetic status of donor cells is expected to result in improvement of cloning efficiency. In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Ali/Bas) into metaphase II (MII) oocytes and analyzed the levels of histone H3K9 acetylation in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with one or two blastomeres from in vitro-fertilized or parthenogenetic embryos. Histone acetylation in donor cells and cloned embryos was detected by anti-acH3K9 antibody using Western immunoblot analysis or immunochemistry, respectively. Data were analyzed by chi-square (developmental rates) or Student-Newman-Keuls (histone acetylation) test. The levels of acetylated histone H3K9 were higher in RCCs than in RFFs (P < 0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC-cloned embryos induced a higher initial pregnancy rate as compared to RFF-cloned embryos (40% vs. 20%; P < 0.05). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed; a live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly (P < 0.05) increased the level of histone H3K9/14 acetylation and the proportion of nuclear transfer embryos developing to blastocyst (49% vs. 33% with non-treated RFF; P < 0.05). The distribution of signals for acH3K9 in either group of cloned embryos did not resemble that in in vivo-fertilized embryos, suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo-derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and can be a useful epigenetic mark to predict efficiency of SCNT rabbits.This work was supported by the Bayerische Forschungsstiftung and by Therapeutic Human Polyclonals, Inc.
https://doi.org/10.1071/RDv19n1Ab102
© CSIRO 2006