Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

29 BIRTH OF A FOAL CLONED BY ADULT SOMATIC CELL NUCLEAR TRANSFER WITH ROSCOVITINE-TREATED DONOR CELLS

Y. H. Choi, Y. G. Chung, D. D. Varner and K. Hinrichs

Reproduction, Fertility and Development 18(2) 123 - 123
Published: 14 December 2005

Abstract

Only one horse foal produced from adult somatic cell nuclear transfer has been reported in the scientific literature (Galli et al. 2003 Nature 425, 680); a second foal from the same laboratory was reported in the popular press in 2005. In these reports, the blastocyst rates were 3 and 17%, and efficiency to birth of a live foal from total reconstructed oocytes was 0.1 and 0.5%, respectively. In cattle, roscovitine treatment of donor cells has been associated with a decrease in blastocyst development, but an increase in live births (Gibbons et al. 2002 Biol. Reprod. 66, 895-900). The present study was performed to determine the effect of roscovitine treatment of donor cells on blastocyst production after equine nuclear transfer and to evaluate the viability of pregnancies established via this treatment. In Experiment 1, fibroblasts were either grown to confluence or treated with 15 µg/mL roscovitine, for 24 h. Enucleated in vitro-matured oocytes were reconstructed by direct injection of fibroblasts using a piezo drill. Recombined oocytes were activated by injection of stallion sperm extract, followed by culture in the presence of 2 mM 6-DMAP for 4 h. They were then placed in culture in DMEM/F-12 with 10% fetal bovine serum (FBS) under mixed gas for 8 days and evaluated for blastocyst development. In Experiment 2, oocytes recombined with either confluent or roscovitine-treated donor cells were activated as above either alone or with the addition of 10 µg/mL cycloheximide at the time of 6-DMAP treatment. Resulting blastocysts from Experiment 2 were transferred transcervically to the uteri of recipient mares. One embryo was transferred per mare. In Experiment 1, there was no difference in rates of cleavage (73-19%) or blastocyst development between confluence and roscovitine treatments (2/55, 3.6% vs. 2/56, 3.6%, respectively). In Experiment 2, there was no significant difference in rates of cleavage (78-18%) or blastocyst development (0-1%; 4/105, 0/104, 0/106, 2/108) among donor cell or activation treatments. Six blastocysts were transferred to mares: two from confluent donor cells and four from roscovitine-treated donor cells. One mare, which received an embryo from the roscovitine donor/6-DMAP treatment, established pregnancy after transfer. The pregnancy continued normally and the mare delivered a colt with minimal assistance on Day 389. Typing for 13 equine microsatellites confirmed that the colt was of the same DNA type as the donor fibroblasts. The colt has grown and developed normally. Results of these studies show that roscovitine treatment of equine donor cells does not negatively affect the proportion of recombined oocytes that progress to the blastocyst stage. A viable colt resulted from an embryo produced with roscovitine-treated donor cells. More work is needed on methods to increase blastocyst rates after nuclear transfer in this species.

This work was supported by the Link Equine Research Endowment Fund, Texas A&M University.

https://doi.org/10.1071/RDv18n2Ab29

© CSIRO 2005

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email