Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

191 INFLUENCE OF THE DIFFERENT TIME COMPONENTS BETWEEN FLUSHING AND TRANSFER ON PREGNANCY RATES OF FROZEN CATTLE EMBRYOS

C. Ponsart, H. Quinton, A. Rohou, J. Kelhembo, G. Bourgoin and P. Humblot

Reproduction, Fertility and Development 18(2) 203 - 204
Published: 14 December 2005

Abstract

Previous studies have shown that the time between flushing and freezing of bovine embryos can influence pregnancy rates (PRs) following embryo transfer (ET). The aim of this study was to determine which time components can influence ET results. Time components between flushing of a superovulated donor and freezing of the collected embryos were investigated under field conditions. Embryos were frozen in 1.5 M ethylene glycol (EG) for direct transfer. During January 2003, ET technicians (EmbryoTop, Rennes cedex, France) recorded systematically times corresponding to each step comprising the time spent in vitro (TIV) from 153 recovery sessions (RS) with freezing: end of flushing, beginning and end of search of embryos, start of equilibration in EG, beginning and end of straw loading, introduction to −7°C in the freezer, and seeding. Numbers of donor cows and ET technicians doing the freezing (n = 5) were noted for each RS. Embryo (stage, quality) and recipient (breed, parity) characteristics were also noted. A total of 548 frozen embryos were transferred and PRs were assessed. Variability of time components was investigated (Bourgoin et al. 2004 Reprod. Fertil. Dev. 16, 207). The influence of time components and other variation factors was tested on PRs (t-tests and chi-square analysis). The TIV averaged 210 ± 80 min and did not influence PR (≤4 h = 51.9% (n = 393) vs. >4 h = 55.5% (n = 155); P > 0.05), as well as duration of flushing (32 ± 8 min), interval between end of flushing and search (31 ± 27 min), duration of search (45 ± 25 min) and interval between end of search and beginning of freezing (101 ± 63 min). Only significant factors were kept for further analysis. The effects of recipient parity, number of donor cows per RS, and interval between introduction of straw to −7°C, and seeding were tested in a multivariate logistic model. PR varied strongly with parity of recipient (+25% in heifers vs. cows; P = 0.001). PRs were higher when the interval between straw introduction in the freezer and seeding lasted at least 5 min (2–4 min = 48.0% (n = 254) vs. 5–8 min = 57.1% (n = 294); P = 0.009). Time and operator effects were confounded. Overall PR results for the two technicians who used mostly 2–4 min intervals averaged 47% (operator values = 35.6, 48.9, and 54.5) whereas PRs were 54.9 and 60.5% for those waiting 5 min or more before inducing seeding (n = 2). PRs were higher when at least two donor cows were collected per RS (1 donor cow = 49% (n = 259) vs. ≥2 donor cows = 56.4% (n = 289); P = 0.003). This was not in agreement with previous observations in fresh embryos (Bourgoin et al. 2004). However, the number of donor cows strongly influenced the number of viable embryos per RS (1 donor cow = 11 ± 5 vs. ≥2 donor cows = 18 ± 8.5; P < 0.05) and could permit the choice of more embryos to be frozen. These results show that good PR may be achieved with a delay of several hours between flushing and freezing, when heifers are used as recipients. Moreover, confirmed from higher numbers of operators, these data show that it is better to wait at least 5 min to achieve equilibration of the embryo before seeding.

Keywords:

https://doi.org/10.1071/RDv18n2Ab191

© CSIRO 2005

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email