307 CHARACTERIZATION OF PROTEIN PHOSPHORYLATIONS IN THE COURSE OF MEIOTIC MATURATION OF BOVINE OOCYTES
M. Bhojwani A , M. Marx B , F. Melo-Sterza B , W. Kanitz A , C. Leiding B and W. Tomek AA Research Institute for the Biology of Farm Animals, Dummerstorf, Germany. email: tomek@fbn-dummerstorf.de;
B Embryo Transfer Station, Neustadt/Aisch, Germany.
Reproduction, Fertility and Development 16(2) 273-273 https://doi.org/10.1071/RDv16n1Ab307
Submitted: 1 August 2003 Accepted: 1 October 2003 Published: 2 January 2004
Abstract
The importance of protein phosphorylations during meiotic maturation (transition from prophase I to metaphase II) of oocytes is documented by the fact that the inhibition of the M-phase kinases, cdc2k or MAPK, arrests the oocytes in the GV stage. A detailed knowledge of the targets of these kinases during this stage of development is still missing. Therefore, we have analyzed the proteome of bovine oocytes by high resolution 2D-gel electrophoresis to detect differences in the expression and phosphorylation state of proteins in the course of in vitro maturation (IVM). Bovine oocytes were matured for different times in TCM 199 containing 3% BSA and 300 oocytes each in GV stage (0-h maturation), in GVBD/M I (10-h maturation) or in M II stage (240 h maturation) were separated on the gels. The proteins were visualized by staining them with silver or with the fluorescence dye Sypro Ruby, and phosphorylated proteins were detected by Western Blotting with Ser-, Thr-, or Tyr-phosphorylation specific antibodies or by staining with the phosphoprotein specific fluorescence dye Pro-Q Diamond. Gels made from oocytes at the above mentioned maturation stages were compared by a computerized gel-overlay software program (2D Decodon, Greitswald, Germany). The overall protein synthesis was statistically analysed by ANOVA (SigmaStat, Ekrath, Germany), pairwise multiple comparison procedure. Only distinct spots with a difference greater than 30% in their optical densities were considered to be differently expressed or phosphorylated. The results showed a three-fold increase in the rate of overall protein synthesis (p 0.05) during GVBD. Newly synthesized proteins were detected mainly in the higher molecular weight (MW) range (60–80 kDa), and protein degradations were found mainly in the lower MW range (20–40 kDa) after GVBD. Preliminary data obtained by analyzing the phosphorylation pattern showed that obviously no phosphorylated proteins could be detected in the GV-stage oocytes. Phosphorylation of different proteins was observed at the time of GVBD after 6 to 10 h IVM, concomitantly with the activation of cdc2k and MAPK. A maximum of phosphorylated proteins was observed in metaphase II. The first results obtained by performing peptide mass fingerprinting using MALDI-Tof showed that members of the family of heat-shock proteins, ribosomal proteins and putative zinc finger proteins (transcription regulators) were differently expressed or phosphorylated during IVM. This work was supported by the DFG, To 178/1-1, 2 and by the Eibl-Stiftung.