Influence of organic cations on basic amino-acid uptake by human placental villi
RB Krishna, J Dancis and M Levitz
Reproduction, Fertility and Development
7(6) 1491 - 1494
Published: 1995
Abstract
Human placental chorionic villi were incubated for 30 min with [3H]lysine or [3H]arginine and the distribution ratios (intracellular:extracellular concentrations) were determined. The ratios remained unchanged when Na+ in Earle's buffered salt solution was replaced with Li+. When Na+ was replaced with choline there was a significant increase is distribution ratios (lysine 1.34 +/- 0.33 v. 3.99 +/- 0.15, arginine 1.95 +/- 0.37 v. 5.05 +/- 1.16). Leucine, a neutral amino acid with a Na(+)-independent transport system, was unaffected by choline substitution. The distribution ratio for alanine, which is Na(+)-dependent, was reduced (2.50 +/- 0.41 v. 1.45 +/- 0.20). Two other quarternary amines, acetyl-beta-methylcholine and tetraethylammonium chloride (TEA) caused similar increases in the distribution ratios of the basic amino acids. Hordenine, a tertiary amine, was less effective and there was little or no effect with ephedrine, a secondary amine. The choline effect was first observable at concentrations of 105 mM. With TEA, there was a progressive increase in distribution ratios beginning at 29 mM. Lysine efflux was measured after incubation of villi with lysine in Earle's buffer or choline buffer. Lysine was rapidly released to the fresh medium with 25% more retained in choline-exposed villi. The amines may cause alterations in the kinetics of basic amino-acid transporters or may modify other aspects of placental physiology permitting an increase retention of the basic amino acids.https://doi.org/10.1071/RD9951491
© CSIRO 1995