A cloning strategy for G-protein-coupled hormone receptors: the ovine beta 1-adrenergic receptor
JF Padbury, YT Tseng and JA Waschek
Reproduction, Fertility and Development
7(3) 521 - 525
Published: 1995
Abstract
Regulation of beta 1-adrenergic receptors is unusual in developing animals. For example, glucocorticoid-and thyroid hormone-responsiveness for several genes is seen in animals treated during fetal life but beta 1-responsiveness is not seen until after birth. In order to investigate this at the transcriptional level, the ovine beta 1 receptor gene was cloned from a sheep genomic library. An approach using high-stringency screening with cDNA probes and oligonucleotides from regions of human and rat genes conserved but unique to the beta 1 receptor but not to other seven transmembrane, G-protein-coupled receptors. Over 800,000 clones were screened from which 40-50 positive clones were identified by each of the probes. There was, however, only a single clone which was recognized by each of the probes. A 5-kb insert was subcloned and shown to contain sequences which hybridized to each of the probes. Using the restriction map of the rat beta 1 receptor, a 1.0-kb Pst1 internal fragment was further subcloned for sequence identification. Confirmation of this fragment as the ovine beta 1 receptor was based on homology of the beta 1 receptor from other species and tissue distribution of mRNA. Nucleotide sequence homology was 93% with the human beta 1 receptor and 84% with rat. Amino acid sequence homology was > 75% and approached 100% in the transmembrane regions. The approach described represents a practical approach to cloning and identification of hormone receptors from the highly homologous members of the seven-transmembrane, G-protein-coupled receptors.https://doi.org/10.1071/RD9950521
© CSIRO 1995