Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases, induces exit from metaphase I arrest in growing pig oocytes
J. Petr, J. Rozinek, Z. Vanourková and F. Jílek
Reproduction, Fertility and Development
11(5) 235 - 246
Published: 1999
Abstract
Calcium plays an important role in the regulation of meiotic maturation in mammalian oocytes. In the present study, mycotoxin cyclopiazonic acid (CPA), an inhibitor of calcium-dependent ATPases, was used to mobilize intracellular calcium deposits in growing pig oocytes, which had not attained full meiotic competence and in which maturation is thus spontaneously blocked at the metaphase I stage. CPA treatment significantly increased the ratio of growing oocytes that are able to overcome the spontaneously occurring metaphase I block to complete their maturation at the metaphase II stage. CPA treatment of a least 2 hours’ duration is necessary to overcome the metaphase I block in growing oocytes. A similar effect upon release from the spontaneous meiotic block at the metaphase I stage was observed after treatment of growing pig oocytes with thapsigargin, another inhibitor of endogenous calcium-dependent ATPases. Numerous calcium deposits in vacuoles, the mitochondria and on the surface of yolk granules in growing pig oocytes were observed. CPA treatment is able to mobilize calcium from the mitochondria, but deposits in vacuoles and deposits on the surface of yolk granules seem to remain intact after CPA treatment. A microinjection of heparin, which is known to bind with the inositol trisphosphate receptors, significantly decreased the ratio of CPA-treated growing oocytes overcoming the block at the metaphase I stage. This indicates that CPA might mobilize calcium in growing pig oocytes through inositol trisphosphate receptors. On the other hand, a microinjection of procaine or a microinjection of ruthenium red, both inhibitors of ryanodine receptors, did not prevent the overcoming of the metaphase I block, induced by CPA treatment. The calcium channel blocker, verapamil, significantly reduces the proportion of CPA-treated growing oocytes that overcome the metaphase I block. This indicates that the influx of calcium from extracellular sources is necessary to over-come the metaphase I block. The calmodulin inhibitors ophiobolin A and W7 also reduce the proportion of CPA-treated growing oocytes overcoming the metaphase I block.Keywords: meiotic maturation, meiotic competence, calcium deposits.
https://doi.org/10.1071/RD99043
© CSIRO 1999