A brief history of technical developments in intracytoplasmic sperm injection (ICSI). Dedicated to the memory of J.M. Cummins
J. G. Thompson A B C * , H. J. McLennan A , S. L. Heinrich A , M. P. Inge A , D. K. Gardner D E and A. J. Harvey D EA
B
C
D
E
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technology for treatment of severe male infertility introduced into clinical practice in 1992. This review provides a brief history of the development of ICSI by acknowledging major developments in the field. The review addresses key developments in pre-clinical and early studies, how ICSI compares with in vitro fertilisation, long-term consequences, how the mechanistic approach to ICSI has changed in both manual and semi-automated approaches, and how sperm selection procedures are integrated into ICSI. From the beginnings using animal models in the 1960–1970s, the development of ICSI is a remarkable and transformative success story. Indeed, its broad use (70% of cycles globally) exceeds the need required for treating infertile males, and this remains a controversial issue. There remain questions around the long-term health impacts of ICSI. Furthermore, advances in automation of the ICSI procedure are occurring. An estimated 6 million children have been born from the ICSI procedure. With further automation of sperm selection technologies, coupled with automation of the injection procedure, it is likely that the proportion of children born from ICSI will further increase.
Keywords: assisted reproduction, automation, fertilisation, ICSI, IVF, male infertility, piezo, spermatozoa, sperm injection, sperm selection.
References
Abdelmassih S, Cardoso J, Abdelmassih V, Dias JA, Abdelmassih R, Nagy ZP (2002) Laser-assisted ICSI: a novel approach to obtain higher oocyte survival and embryo quality rates. Human Reproduction 17(10), 2694-2699.
| Crossref | Google Scholar | PubMed |
Aitken RJ, Bakos HW (2021) Should we be measuring DNA damage in human spermatozoa? New light on an old question. Human Reproduction 36(5), 1175-1185.
| Crossref | Google Scholar | PubMed |
Aydos K, Aydos OS (2021) Sperm selection procedures for optimizing the outcome of ICSI in patients with NOA. Journal of Clinical Medicine 10(12), 2687.
| Crossref | Google Scholar |
Baldini D, Ferri D, Baldini GM, Lot D, Catino A, Vizziello D, Vizziello G (2021) Sperm selection for ICSI: do we have a winner? Cells 10(12), 3566.
| Crossref | Google Scholar |
Banker M, Dyer S, Chambers GM, Ishihara O, Kupka M, de Mouzon J, Zegers-Hochschild F, Adamson GD (2021) International Committee for Monitoring Assisted Reproductive Technologies (ICMART): world report on assisted reproductive technologies, 2013. Fertility and Sterility 116(3), 741-756.
| Crossref | Google Scholar | PubMed |
Beck-Fruchter R, Lavee M, Weiss A, Geslevich Y, Shalev E (2014) Rescue intracytoplasmic sperm injection: a systematic review. Fertility and Sterility 101(3), 690-698.
| Crossref | Google Scholar | PubMed |
Beck-Fruchter R, Shalev E, Weiss A (2016) Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reproductive BioMedicine Online 32(3), 286-298.
| Crossref | Google Scholar | PubMed |
Beilby KH, Kneebone E, Roseboom TJ, van Marrewijk IM, Thompson JG, Norman RJ, Robker RL, Mol BWJ, Wang R (2023) Offspring physiology following the use of IVM, IVF and ICSI: a systematic review and meta-analysis of animal studies. Human Reproduction Update 29(3), 272-290.
| Crossref | Google Scholar | PubMed |
Belva F, Bonduelle M, Roelants M, Michielsen D, Van Steirteghem A, Verheyen G, Tournaye H (2016) Semen quality of young adult ICSI offspring: the first results. Human Reproduction 31(12), 2811-2820.
| Crossref | Google Scholar | PubMed |
Belva F, Roelants M, De Schepper J, Van Steirteghem A, Tournaye H, Bonduelle M (2017) Reproductive hormones of ICSI-conceived young adult men: the first results. Human Reproduction 32(2), 439-446.
| Crossref | Google Scholar | PubMed |
Bhattacharya S, Hamilton MPR, Shaaban M, Khalaf Y, Seddler M, Ghobara T, Braude P, Kennedy R, Rutherford A, Hartshorne G, Templeton A (2001) Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. The Lancet 357(9274), 2075-2079.
| Crossref | Google Scholar |
Bodri D, Sugimoto T, Serna JY, Kondo M, Kato R, Kawachiya S, Matsumoto T (2015) Influence of different oocyte insemination techniques on early and late morphokinetic parameters: retrospective analysis of 500 time-lapse monitored blastocysts. Fertility and Sterility 104(5), 1175-1181.e2.
| Crossref | Google Scholar | PubMed |
Boitrelle F, Shah R, Saleh R, Henkel R, Kandil H, Chung E, Vogiatzi P, Zini A, Arafa M, Agarwal A (2021) The sixth edition of the WHO manual for human semen analysis: a critical review and SWOT analysis. Life (Basel) 11(12), 1368.
| Crossref | Google Scholar |
Bonduelle M, Legein J, Derde M-P, Buysse A, Schietecatte J, Wisanto A, Devroey P, Van Steirteghem A, Liebaers I (1995) Comparative follow-up study of 130 children born after intracytoplasmic sperm injection and 130 children born after in-vitro fertilization. Human Reproduction 10(12), 3327-3331.
| Crossref | Google Scholar | PubMed |
Brun RB (1974) Studies on fertilization in Xenopus laevis. Biology of Reproduction 11(5), 513-518.
| Crossref | Google Scholar | PubMed |
Caddy M, Popkiss S, Weston G, Vollenhoven B, Rombauts L, Green M, Zander-Fox D (2023) PIEZO-ICSI increases fertilization rates compared with conventional ICSI in patients with poor prognosis. Journal of Assisted Reproduction and Genetics 40(2), 389-398.
| Crossref | Google Scholar | PubMed |
Catford SR, McLachlan RI, O’Bryan MK, Halliday JL (2017) Long-term follow-up of intra-cytoplasmic sperm injection-conceived offspring compared with in vitro fertilization-conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology 5(4), 610-621.
| Crossref | Google Scholar | PubMed |
Catford SR, McLachlan RI, O’Bryan MK, Halliday JL (2018) Long-term follow-up of ICSI-conceived offspring compared with spontaneously conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology 6(5), 635-653.
| Crossref | Google Scholar | PubMed |
Chan PJ, Jacobson JD, Corselli JU, Patton WC (2006) A simple zeta method for sperm selection based on membrane charge. Fertility and Sterility 85(2), 481-486.
| Crossref | Google Scholar | PubMed |
Choi KH, Lee JH, Yang YH, Yoon TK, Lee DR, Lee WS (2011) Efficiency of laser-assisted intracytoplasmic sperm injection in a human assisted reproductive techniques program. Clinical and Experimental Reproductive Medicine 38(3), 148-152.
| Crossref | Google Scholar | PubMed |
Cohen J, Malter H, Fehilly C, Wright G, Elsner C, Kort H, Massey J (1988) Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. The Lancet 332(8603), 162.
| Crossref | Google Scholar |
Cohen Y, Malcov M, Schwartz T, Mey-Raz N, Carmon A, Cohen T, Lessing JB, Amit A, Azem F (2004) Spindle imaging: a new marker for optimal timing of ICSI? Human Reproduction 19(3), 649-654.
| Crossref | Google Scholar | PubMed |
Costa-Borges N, Munné S, Albó E, Mas S, Castelló C, Giralt G, Lu Z, Chau C, Acacio M, Mestres E, Matia Q, Marquès L, Rius M, Márquez C, Vanrell I, Pujol A, Mataró D, Seth-Smith M, Mollinedo L, Calderón G, Zhang J (2023) First babies conceived with automated intracytoplasmic sperm injection. Reproductive BioMedicine Online 47, 103237.
| Crossref | Google Scholar |
Cruz M, Garrido N, Gadea B, Muñoz M, Pérez-Cano I, Meseguer M (2013) Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reproductive BioMedicine Online 27(4), 367-375.
| Crossref | Google Scholar | PubMed |
Cummins JM, Jequier AM (1995) Concerns and recommendations for intracytoplasmic sperm injection (ICSI) treatment. Human Reproduction 10, 138-143.
| Crossref | Google Scholar | PubMed |
Danfour MA, Elmahaishi MS (2010) Human oocyte oolemma characteristic is positively related to embryo developmental competence after ICSI procedure. Middle East Fertility Society Journal 15(4), 269-273.
| Crossref | Google Scholar |
Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan A (2012) Reproductive technologies and the risk of birth defects. The New England Journal of Medicine 366(19), 1803-1813.
| Crossref | Google Scholar | PubMed |
De Munck N, Bayram A, Elkhatib I, Abdala A, El-Damen A, Arnanz A, Melado L, Lawrenz B, Fatemi HM (2022) Marginal differences in preimplantation morphokinetics between conventional IVF and ICSI in patients with preimplantation genetic testing for aneuploidy (PGT-A): a sibling oocyte study. PLoS ONE 17(4), e0267241.
| Crossref | Google Scholar | PubMed |
Dozortsev D, Rybouchkin A, De Sutter P, Dhont M (1995) Sperm plasma membrane damage prior to intracytoplasmic sperm injection: a necessary condition for sperm nucleus decondensation. Human Reproduction 10(11), 2960-2964.
| Crossref | Google Scholar | PubMed |
Dumoulin JC, Coonen E, Bras M, van Wissen LC, Ignoul-Vanvuchelen R, Bergers-Jansen JM, Derhaag JG, Geraedts JP, Evers JL (2000) Comparison of in-vitro development of embryos originating from either conventional in-vitro fertilization or intracytoplasmic sperm injection. Human Reproduction 15(2), 402-409.
| Crossref | Google Scholar | PubMed |
Dumoulin JM, Coonen E, Bras M, Bergers-Janssen JM, Ignoul-Vanvuchelen RC, van Wissen LC, Geraedts JP, Evers JL (2001) Embryo development and chromosomal anomalies after ICSI: effect of the injection procedure. Human Reproduction 16(2), 306-312.
| Crossref | Google Scholar | PubMed |
Dyer S, Chambers GM, de Mouzon J, Nygren KG, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Adamson GD (2016) International committee for monitoring assisted reproductive technologies world report: assisted reproductive technology 2008, 2009 and 2010. Human Reproduction 31(7), 1588-1609.
| Crossref | Google Scholar | PubMed |
Erberelli RF, Salgado RM, Pereira DHM, Wolff P (2017) Hyaluronan-binding system for sperm selection enhances pregnancy rates in ICSI cycles associated with male factor infertility. JBRA Assisted Reproduction 21(1), 2-6.
| Crossref | Google Scholar | PubMed |
ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine (2017) The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reproductive BioMedicine Online 35(5), 494-510.
| Crossref | Google Scholar |
Esteves SC, Roque M, Bedoschi G, Haahr T, Humaidan P (2018) Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nature Reviews Urology 15(9), 535-562.
| Crossref | Google Scholar | PubMed |
Fawzy M, Emad M, Mahran A, Abdelrahman MY, Fetih AN, Abdelghafar H, Elsuity MA, Rashed H, Sabry M (2020) A randomized controlled trial of laser-assisted ICSI. Human Reproduction 35(12), 2692-2700.
| Crossref | Google Scholar | PubMed |
Fernández J, Pedrosa C, Vergara F, Nieto AI, Quintas A, Fernández A, Moyano C, Fernández A, Ponce J (2020) A new oocyte-holding pipette for intracytoplasmic sperm injection without cytoplasmic aspiration: an experimental study in mouse oocytes. Reproductive Biology 20(4), 584-588.
| Crossref | Google Scholar | PubMed |
Fishel S, Lisi F, Rinaldi L, Green S, Hunter A, Dowell K, Thornton S (1995) Systematic examination of immobilizing spermatozoa before intracytoplasmic sperm injection in the human. Human Reproduction 10(3), 497-500.
| Crossref | Google Scholar | PubMed |
Fishel S, Aslam I, Lisi F, Rinaldi L, Timson J, Jacobson M, Gobetz L, Green S, Campbell A, Lisi R (2000) Should ICSI be the treatment of choice for all cases of in-vitro conception? Human Reproduction 15(6), 1278-1283.
| Crossref | Google Scholar | PubMed |
Fujii Y, Endo Y, Mitsuhata S, Hayashi M, Motoyama H (2020) Evaluation of the effect of piezo-intracytoplasmic sperm injection on the laboratory, clinical, and neonatal outcomes. Reproductive Medicine and Biology 19(2), 198-205.
| Crossref | Google Scholar | PubMed |
Furuhashi K, Saeki Y, Enatsu N, Iwasaki T, Ito K, Mizusawa Y, Matsumoto Y, Kokeguchi S, Shiotani M (2019) Piezo-assisted ICSI improves fertilization and blastocyst development rates compared with conventional ICSI in women aged more than 35 years. Reproductive Medicine and Biology 18(4), 357-361.
| Crossref | Google Scholar | PubMed |
Graham CF (1966) The regulation of DNA synthesis and mitosis in multinucleate frog eggs. Journal of Cell Science 1(3), 363-374.
| Crossref | Google Scholar | PubMed |
Hanson BM, Kohn TP, Pastuszak AW, Scott RT, Jr, Cheng PJ, Hotaling JM (2021) Round spermatid injection into human oocytes: a systematic review and meta-analysis. Asian Journal of Andrology 23(4), 363-369.
| Crossref | Google Scholar | PubMed |
Hasanen E, Elqusi K, ElTanbouly S, Hussin AE, AlKhadr H, Zaki H, Henkel R, Agarwal A (2020) PICSI vs. MACS for abnormal sperm DNA fragmentation ICSI cases: a prospective randomized trial. Journal of Assisted Reproduction and Genetics 37(10), 2605-2613.
| Crossref | Google Scholar | PubMed |
Hiramoto Y (1962) Microinjection of the live spermatozoa into sea urchin eggs. Experimental Cell Research 27, 416-426.
| Crossref | Google Scholar | PubMed |
Hiraoka K, Kitamura S (2015) Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm. Journal of Assisted Reproduction and Genetics 32(12), 1827-1833.
| Crossref | Google Scholar | PubMed |
Hiraoka K, Tamaki T, Matsumura Y, Kiriake C, Uto H, Yoshida H, Kitamura S (2012) Impact of the volume of cytoplasm aspirated into the injection pipette at the time of oolemma breakage on the fertilization rate after ICSI: a preliminary study. Journal of Mammalian Ova Research 29(1), 82-87.
| Crossref | Google Scholar |
Huang T, Kimura Y, Yanagimachi R (1996) The use of piezo micromanipulation for intracytoplasmic sperm injection of human oocytes. Journal of Assisted Reproduction and Genetics 13(4), 320-328.
| Crossref | Google Scholar | PubMed |
Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L (2003) Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertility and Sterility 79, 1616-1624.
| Crossref | Google Scholar | PubMed |
Iritani A (1991) Micromanipulation of gametes for in vitro assisted fertilization. Molecular Reproduction and Development 28(2), 199-207.
| Crossref | Google Scholar | PubMed |
Jakab A, Sakkas D, Delpiano E, Cayli S, Kovanci E, Ward D, Ravelli A, Huszar G (2005) Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertility and Sterility 84(6), 1665-1673.
| Crossref | Google Scholar | PubMed |
Kanatsu-Shinohara M, Shiromoto Y, Ogonuki N, Inoue K, Hattori S, Miura K, Watanabe N, Hasegawa A, Mochida K, Yamamoto T, Miyakawa T, Ogura A, Shinohara T (2023) Intracytoplasmic sperm injection induces transgenerational abnormalities in mice. The Journal of Clinical Investigation 133(22), e170140.
| Crossref | Google Scholar |
Kheirollahi-Kouhestani M, Razavi S, Tavalaee M, Deemeh MR, Mardani M, Moshtaghian J, Nasr-Esfahani MH (2009) Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Human Reproduction 24(10), 2409-2416.
| Crossref | Google Scholar | PubMed |
Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biology of Reproduction 52(4), 709-720.
| Crossref | Google Scholar | PubMed |
Kocur OM, Xie P, Cheung S, Souness S, McKnight M, Rosenwaks Z, Palermo GD (2023) Can a sperm selection technique improve embryo ploidy? Andrology 11(8), 1605-1612.
| Crossref | Google Scholar | PubMed |
Konc J, Kanyó K, Cseh S (2004) Visualization and examination of the meiotic spindle in human oocytes with polscope. Journal of Assisted Reproduction and Genetics 21(10), 349-353.
| Crossref | Google Scholar | PubMed |
Lanzendorf SE, Maloney MK, Veeck LL, Slusser J, Hodgen GD, Rosenwaks Z (1988) A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertility and Sterility 49(5), 835-842.
| Crossref | Google Scholar | PubMed |
Lemmen JG, Agerholm I, Ziebe S (2008) Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reproductive BioMedicine Online 17(3), 385-391.
| Crossref | Google Scholar | PubMed |
Lepine S, McDowell S, Searle LM, Kroon B, Glujovsky D, Yazdani A (2019) Advanced sperm selection techniques for assisted reproduction. Cochrane Database of Systematic Reviews 7(7), Cd010461.
| Crossref | Google Scholar |
Levran D, Bider D, Yonesh M, Yemini Z, Seidman DS, Mashiach S, Dor J (1995) A randomized study of intracytoplasmic sperm injection (ICSI) versus subzonal insemination (SUZI) for the management of severe male-factor infertility. Journal of Assisted Reproduction and Genetics 12(5), 319-321.
| Crossref | Google Scholar | PubMed |
Lu Z, Zhang X, Leung C, Esfandiari N, Casper RF, Sun Y (2011) Robotic ICSI (Intracytoplasmic Sperm Injection). IEEE Transactions on Biomedical Engineering 58(7), 2102-2108.
| Crossref | Google Scholar | PubMed |
Lyu QF, Deng L, Xue SG, Cao SF, Liu XY, Jin W, Wu LQ, Kuang YP (2010) New technique for mouse oocyte injection via a modified holding pipette. Reproductive BioMedicine Online 21(5), 663-666.
| Crossref | Google Scholar | PubMed |
Ma N, Mochel NRd, Pham PD, Yoo TY, Cho KWY, Digman MA (2019) Label-free assessment of pre-implantation embryo quality by the Fluorescence Lifetime Imaging Microscopy (FLIM)-phasor approach. Scientific Reports 9(1), 13206.
| Crossref | Google Scholar | PubMed |
McLachlan RI, Fuscaldo G, Rho H, Poulos C, Dalrymple J, Jackson P, Holden CA (1995) Clinical results from intracytoplasmic sperm injection at monash IVF. Reproduction, Fertility and Development 7(2), 247-253.
| Crossref | Google Scholar | PubMed |
McLennan HJ, Heinrich SL, Inge MP, Wallace SJ, Blanch AJ, Hails L, O’Connor JP, Waite MB, McIlfatrick S, Nottle MB, Dunning KR, Gardner DK, Thompson JG, Love AK (2024) A micro-fabricated device (microICSI) improves porcine blastocyst development and procedural efficiency for both porcine intracytoplasmic sperm injection and human microinjection. Journal of Assisted Reproduction and Genetics 41(2), 297-309.
| Crossref | Google Scholar | PubMed |
Miller D, Pavitt S, Sharma V, Forbes G, Hooper R, Bhattacharya S, Kirkman-Brown J, Coomarasamy A, Lewis S, Cutting R, Brison D, Pacey A, West R, Brian K, Griffin D, Khalaf Y (2019) Physiological, hyaluronan-selected intracytoplasmic sperm injection for infertility treatment (HABSelect): a parallel, two-group, randomised trial. The Lancet 393(10170), 416-422.
| Crossref | Google Scholar |
Mokánszki A, Tóthné EV, Bodnár B, Tándor Z, Molnár Z, Jakab A, Ujfalusi A, Oláh É (2014) Is sperm hyaluronic acid binding ability predictive for clinical success of intracytoplasmic sperm injection: PICSI vs. ICSI? Systems Biology in Reproductive Medicine 60(6), 348-354.
| Crossref | Google Scholar | PubMed |
Moon JH, Hyun CS, Lee SW, Son WY, Yoon SH, Lim JH (2003) Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Human Reproduction 18(4), 817-820.
| Crossref | Google Scholar | PubMed |
Nagy ZP, Liu J, Joris G, Bocken G, Desmet B, Van Ranst A, Vankelecom A, Devroey P, van Steirteghem AC (1995) The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Human Reproduction 10(12), 3171-3177.
| Crossref | Google Scholar | PubMed |
Nagy ZP, Oliveira SA, Abdelmassih V, Abdelmassih R (2001) Novel use of laser to assist ICSI for patients with fragile oocytes: a case report. Reproductive BioMedicine Online 4(1), 27-31.
| Crossref | Google Scholar |
Nasr-Esfahani MH, Razavi S, Vahdati AA, Fathi F, Tavalaee M (2008) Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. Journal of Assisted Reproduction and Genetics 25(5), 197-203.
| Crossref | Google Scholar | PubMed |
Nasr Esfahani MH, Deemeh MR, Tavalaee M, Sekhavati MH, Gourabi H (2016) Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: a double-blind, randomized clinical trial. International Journal of Fertility and Sterility 10(2), 253-260.
| Crossref | Google Scholar | PubMed |
Ng S-C, Bongso A, Ratnam SS, Sathananthan H, Chan CLK, Wong PC, Hagglund L, Anandakumar C, Wong YC, Goh VHH (1988) Pregnancy after transfer of sperm under zona. The Lancet 332(8614), 790.
| Crossref | Google Scholar |
Nosrati R, Graham PJ, Zhang B, Riordon J, Lagunov A, Hannam TG, Escobedo C, Jarvi K, Sinton D (2017) Microfluidics for sperm analysis and selection. Nature Reviews Urology 14(12), 707-730.
| Crossref | Google Scholar | PubMed |
Novoselsky Persky M, Hershko-Klement A, Solnica A, Bdolah Y, Hurwitz A, Ketzin El Gilad M, Nefesh I, Esh-Broder E (2021) Conventional ICSI vs. physiological selection of spermatozoa for ICSI (picsi) in sibling oocytes. Andrology 9(3), 873-877.
| Crossref | Google Scholar | PubMed |
Ohgi S, Hagihara C, Anakubo H, Yanaihara A (2016) A comparison of the clinical outcomes of embryos derived from intracytoplasmic sperm injection after early fertilization check and conventional insemination using sibling oocytes. Archives of Gynecology and Obstetrics 293(4), 887-892.
| Crossref | Google Scholar | PubMed |
Palermo G, Joris H, Devroey P, Vansteirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. The Lancet 340(8810), 17-18.
| Crossref | Google Scholar | PubMed |
Palermo GD, Alikani M, Bertoli M, Colombero LT, Moy F, Cohen J, Rosenwaks Z (1996a) Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection. Human Reproduction 11(1), 172-176.
| Crossref | Google Scholar | PubMed |
Palermo GD, Schlegel PN, Colombero LT, Zaninovic N, Moy F, Rosenwaks Z (1996b) Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Human Reproduction 11(5), 1023-1029.
| Crossref | Google Scholar | PubMed |
Parrella A, Keating D, Cheung S, Xie P, Stewart JD, Rosenwaks Z, Palermo GD (2019) A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. Journal of Assisted Reproduction and Genetics 36(10), 2057-2066.
| Crossref | Google Scholar | PubMed |
Petersen CG, Oliveira JBA, Mauri AL, Massaro FC, Baruffi RLR, Pontes A, Franco JG, Jr (2009) Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis. Reproductive BioMedicine Online 18(2), 235-243.
| Crossref | Google Scholar | PubMed |
Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology (2020) Intracytoplasmic sperm injection (ICSI) for non-male factor indications: a committee opinion. Fertility and Sterility 114(2), 239-245.
| Crossref | Google Scholar |
Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M (2010) Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia 42(1), 13-19.
| Crossref | Google Scholar | PubMed |
Richter KS, Davis A, Carter J, Greenhouse SJ, Mottla GL, Tucker MJ (2006) No advantage of laser-assisted over conventional intracytoplasmic sperm injection: a randomized controlled trial [NCT00114725]. Journal of Experimental & Clinical Assisted Reproduction 3, 5.
| Crossref | Google Scholar | PubMed |
Rienzi L, Greco E, Ubaldi F, Iacobelli M, Martinez F, Tesarik J (2001) Laser-assisted intracytoplasmic sperm injection. Fertility and Sterility 76(5), 1045-1047.
| Crossref | Google Scholar | PubMed |
Schlegel PN, Girardi SK (1997) In vitro fertilization for male factor infertility. The Journal of Clinical Endocrinology & Metabolism 82(3), 709-716.
| Crossref | Google Scholar | PubMed |
Silber SJ, Nagy ZP, Liu J, Godoy H, Devroey P, Van Steirteghem AC (1994) Andrology: conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Human Reproduction 9(9), 1705-1709.
| Crossref | Google Scholar | PubMed |
Silva CP, Kommineni K, Oldenbourg R, Keefe DL (1999) The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes. Fertility and Sterility 71(4), 719-721.
| Crossref | Google Scholar | PubMed |
Sonntag B, Eisemann N, Elsner S, Ludwig AK, Katalinic A, Kixmüller D, Ludwig M (2020) Pubertal development and reproductive hormone levels of singleton ICSI offspring in adolescence: results of a prospective controlled study. Human Reproduction 35(4), 968-976.
| Crossref | Google Scholar | PubMed |
Staessen C, Camus M, Clasen K, De Vos A, Van Steirteghem A (1999) Conventional in-vitro fertilization versus intracytoplasmic sperm injection in sibling oocytes from couples with tubal infertility and normozoospermic semen. Human Reproduction 14(10), 2474-2479.
| Crossref | Google Scholar | PubMed |
Svalander P, Forsberg A-S, Jakobsson A-H, Wikland M (1995) Factors of importance for the establishment of a successful program of intracytoplasmic sperm injection treatment for male infertility. Fertility and Sterility 63(4), 828-837.
| Crossref | Google Scholar | PubMed |
Takeuchi S, Minoura H, Shibahara T, Shen X, Futamura N, Toyoda N (2001) Comparison of piezo-assisted micromanipulation with conventional micromanipulation for intracytoplasmic sperm injection into human oocytes. Gynecologic and Obstetric Investigation 52(3), 158-162.
| Crossref | Google Scholar | PubMed |
Tarín JJ (1995) Subzonal insemination, partial zona dissection or intracytoplasmic sperm injection? An easy decision? Human Reproduction 10(1), 165-170.
| Crossref | Google Scholar | PubMed |
Tesarik J, Sousa M (1995) Key elements of a highly efficient intracytoplasmic sperm injection technique: Ca2+ fluxes and oocyte cytoplasmic dislocation. Fertility and Sterility 64(4), 770-776.
| Crossref | Google Scholar | PubMed |
Tiegs AW, Scott RT (2020) Evaluation of fertilization, usable blastocyst development and sustained implantation rates according to intracytoplasmic sperm injection operator experience. Reproductive BioMedicine Online 41(1), 19-27.
| Crossref | Google Scholar | PubMed |
Tilia L, Chapman M, Kilani S, Cooke S, Venetis C (2020) Oocyte meiotic spindle morphology is a predictive marker of blastocyst ploidy – a prospective cohort study. Fertility and Sterility 113(1), 105-113.e1.
| Crossref | Google Scholar | PubMed |
Uehara T, Yanagimachi R (1976) Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biology of Reproduction 15(4), 467-470.
| Crossref | Google Scholar | PubMed |
Vahidi S, Narimani N, Dehghan Marvast L, Mangoli E, Nabi A, Sadeghi M (2022) Comparison of zeta potential and physiological intracytoplasmic sperm injection in obtaining sperms with a lower DNA fragmentation index: a cross-sectional study. International Journal of Reproductive BioMedicine (IJRM) 20(5), 357-364.
| Crossref | Google Scholar | PubMed |
Vanderzwalmen P, Bertin G, Lejeune B, Nijs M, Vandamme B, Schoysman R (1996) Two essential steps for a successful intracytoplasmic sperm injection: injection of immobilized spermatozoa after rupture of the oolema. Human Reproduction 11(3), 540-547.
| Crossref | Google Scholar | PubMed |
Van Landuyt L, De Vos A, Joris H, Verheyen G, Devroey P, Van Steirteghem A (2005) Blastocyst formation in in vitro fertilization versus intracytoplasmic sperm injection cycles: influence of the fertilization procedure. Fertility and Sterility 83(5), 1397-1403.
| Crossref | Google Scholar | PubMed |
van Rumste MM, Evers JL, Farquhar CM, Blake DA (2000) Intra-cytoplasmic sperm injection versus partial zona dissection, subzonal insemination and conventional techniques for oocyte insemination during in vitro fertilisation. Cochrane Database of Systematic Reviews [2] Cd001301.
| Google Scholar |
Van Steirteghem AC, Liu J, Joris H, Nagy Z, Janssenswillen C, Tournaye H, Derde M-P, Van Assche E, Devroey P (1993a) Higher success rate by intracytoplasmic sperm injection than by subzonal insemination. Report of a second series of 300 consecutive treatment cycles. Human Reproduction 8(7), 1055-1060.
| Crossref | Google Scholar | PubMed |
Van Steirteghem AC, Nagy Z, Joris H, Liu J, Staessen C, Smitz J, Wisanto A, Devroey P (1993b) High fertilization and implantation rates after intracytoplasmic sperm injection. Human Reproduction 8(7), 1061-1066.
| Crossref | Google Scholar | PubMed |
Verheyen G, Popovic-Todorovic B, Tournaye H (2017) Processing and selection of surgically-retrieved sperm for ICSI: a review. Basic and Clinical Andrology 27, 6.
| Crossref | Google Scholar | PubMed |
Wakayama T, Ogura A (2024) In memory of Dr. Ryuzo Yanagimachi (Yana) (1928–2023). Journal of Reproduction and Development 70(2), i-vi.
| Crossref | Google Scholar | PubMed |
Wang W-H, Meng L, Hackett RJ, Odenbourg R, Keefe DL (2001a) The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertility and Sterility 75(2), 348-353.
| Crossref | Google Scholar | PubMed |
Wang WH, Meng L, Hackett RJ, Keefe DL (2001b) Developmental ability of human oocytes with or without birefringent spindles imaged by Polscope before insemination. Human Reproduction 16(7), 1464-1468.
| Crossref | Google Scholar | PubMed |
West R, Coomarasamy A, Frew L, Hutton R, Kirkman-Brown J, Lawlor M, Lewis S, Partanen R, Payne-Dwyer A, Román-Montañana C, Torabi F, Tsagdi S, Miller D (2022) Sperm selection with hyaluronic acid improved live birth outcomes among older couples and was connected to sperm DNA quality, potentially affecting all treatment outcomes. Human Reproduction 37(6), 1106-1125.
| Crossref | Google Scholar | PubMed |
Yagoub SH, Thompson JG, Orth A, Dholakia K, Gibson BC, Dunning KR (2022) Fabrication on the microscale: a two-photon polymerized device for oocyte microinjection. Journal of Assisted Reproduction and Genetics 39(7), 1503-1513.
| Crossref | Google Scholar | PubMed |
Yanagida K, Katayose H, Yazawa H, Kimura Y, Konnai K, Sato A (1999) The usefulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans. Human Reproduction 14(2), 448-453.
| Crossref | Google Scholar | PubMed |
Yanagida K, Katayose H, Hirata S, Yazawa H, Hayashi S, Sato A (2001) Influence of sperm immobilization on onset of Ca2+ oscillations after ICSI. Human Reproduction 16(1), 148-152.
| Crossref | Google Scholar | PubMed |
Yavas Y, Roberge S, Khamsi F, Shirazi P, Endman MW, Wong JC (2001) Performing ICSI using an injection pipette with the smallest possible inner diameter and a long taper increases normal fertilization rate, decreases incidence of degeneration and tripronuclear zygotes, and enhances embryo development. Journal of Assisted Reproduction and Genetics 18(8), 426-435.
| Crossref | Google Scholar | PubMed |
Zander-Fox D, Lam K, Pacella-Ince L, Tully C, Hamilton H, Hiraoka K, McPherson NO, Tremellen K (2021) PIEZO-ICSI increases fertilization rates compared with standard ICSI: a prospective cohort study. Reproductive BioMedicine Online 43(3), 404-412.
| Crossref | Google Scholar | PubMed |