Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Characteristics of lipid droplets and the expression of proteins involved in lipolysis in the murine cervix during mid-pregnancy

Longlong Tao A * , Hongyan Zhang A * , Hongmei Wang A * , Liuhui Li A , Libo Huang A , Feng Su A , Xuejun Yuan B , Mingjiu Luo A C and Lijiang Ge https://orcid.org/0000-0003-4264-2266 A C
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China.

B College of Life Science, Shandong Agricultural University, N0.61, Daizong Street, Taian, Shandong Province, 271018, P.R. China.

C Corresponding author. Email: glj@sdau.edu.cn; luo9616@163.com

Reproduction, Fertility and Development 32(11) 967-975 https://doi.org/10.1071/RD19425
Submitted: 14 November 2019  Accepted: 30 May 2020   Published: 30 June 2020

Abstract

Lipid droplets (LDs) are reservoirs of arachidonoyl lipids for prostaglandin (PG) E2 synthesis, and progesterone can stimulate PGE2 synthesis; however, the relationship between progesterone and LD metabolism in the murine cervix remains unclear. In the present study we examined LD distribution and changes in the expression of proteins involved in lipolysis and autophagy in the murine cervix during pregnancy, and compared the findings with those in dioestrous mice. During mid-pregnancy, LDs were predominantly distributed in the cervical epithelium. Electron microscopy revealed the transfer of numerous LDs from the basal to apical region in the luminal epithelium, marked catabolism of LDs, an elevated number of LDs and autophagosomes and a higher LD : mitochondrion size ratio in murine cervical epithelial cells (P < 0.05). In addition, immunohistochemical and western blotting analyses showed significantly higher cAMP-dependent protein kinase, adipose triglyceride lipase and hormone-sensitive lipase expression, and a higher light chain 3 (LC3) II : LC3I ratio in the stroma and smooth muscles and, particularly, in murine cervical epithelial cells, during mid-pregnancy than late dioestrus. In conclusion, these results suggest that the enhanced lipolysis of LDs and autophagy in murine cervical tissues were closely related to pregnancy and were possibly controlled by progesterone because LD catabolism may be necessary for energy provision and PGE2 synthesis to maintain a closed pregnant cervix.

Graphical Abstract Image

Additional keywords: autophagy, mice, pregnancy.


References

Batra, S., and Sharma, R. K. (2014). Relative abundance of cell organelles steroidogenic cells of corpus luteum of goat in different reproductive phases. J. Cell Tissue Res. 14, 4037–4042.

Blanchette-Mackie, E. J., Dwyer, N. K., Barber, T., Coxey, R. A., Takeda, T., Rondinone, C. M., Theodorakis, J. L., Greenberg, A. S., and Londos, C. (1995). Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J. Lipid Res. 36, 1211–1226.
| 7665999PubMed |

Boshier, D. P., Fairclough, R. J., and Holloway, H. (1987). Assessment of sheep blastocyst effects on neutral lipids in the uterine caruncular epithelium. J. Reprod. Fertil. 79, 569–573.
Assessment of sheep blastocyst effects on neutral lipids in the uterine caruncular epithelium.Crossref | GoogleScholarGoogle Scholar | 3572888PubMed |

Boström, P., Rutberg, M., Ericsson, J., Holmdahl, P., Andersson, L., Frohman, M. A., Borén, J., and Olofsson, S. O. (2005). Cytosolic lipid droplets increase in size by microtubule-dependent complex formation. Arterioscler. Thromb. Vasc. Biol. 25, 1945–1951.
Cytosolic lipid droplets increase in size by microtubule-dependent complex formation.Crossref | GoogleScholarGoogle Scholar | 16051877PubMed |

Bozza, P. T., and Viola, J. P. B. (2010). Lipid droplets in inflammation and cancer. Prostaglandins Leukot. Essent. Fatty Acids 82, 243–250.
Lipid droplets in inflammation and cancer.Crossref | GoogleScholarGoogle Scholar | 20206487PubMed |

Bozza, P. T., Bakker-Abreu, I., Navarro-Xavier, R. A., and Bandeira-Melo, C. (2011). Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot. Essent. Fatty Acids 85, 205–213.
Lipid body function in eicosanoid synthesis: an update.Crossref | GoogleScholarGoogle Scholar | 21565480PubMed |

Brinsfield, T. H., and Hawk, H. W. (1973). Control by progesterone of the concentration of lipid droplets in epithelial cells of the sheep endometrium. J. Anim. Sci. 36, 919–922.
Control by progesterone of the concentration of lipid droplets in epithelial cells of the sheep endometrium.Crossref | GoogleScholarGoogle Scholar | 4735755PubMed |

Byers, S. L., Wiles, M. V., Dunn, S. L., and Taft, R. A. (2012). Mouse estrous cycle identification tool and images. PLoS One 7, e35538.
Mouse estrous cycle identification tool and images.Crossref | GoogleScholarGoogle Scholar | 22514749PubMed |

Cheng, J., Fujita, A., Ohsaki, Y., Suzuki, M., Shinohara, Y., and Fujimoto, T. (2009). Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets. Histochem. Cell Biol. 132, 281–291.
Quantitative electron microscopy shows uniform incorporation of triglycerides into existing lipid droplets.Crossref | GoogleScholarGoogle Scholar | 19557427PubMed |

Clifford, G. M., Londos, C., Kraemer, F. B., Vernon, R. G., and Yeaman, S. J. (2000). Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J. Biol. Chem. 275, 5011–5015.
Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes.Crossref | GoogleScholarGoogle Scholar | 10671541PubMed |

de Almeida, P. E., Toledo, D. A. M., Rodrigues, G. S. C., and D’Avila, H. (2018). Lipid bodies as sites of prostaglandin E2 synthesis during chagas disease: impact in the parasite escape mechanism. Front. Microbiol. 9, 499.
Lipid bodies as sites of prostaglandin E2 synthesis during chagas disease: impact in the parasite escape mechanism.Crossref | GoogleScholarGoogle Scholar | 29616011PubMed |

De Pascale, C., Bostrom, P., Wickström, Y., Mogensen, C., Mattsson Hultén, L., Perkins, R., Ståhlman, M., Wiklund, O., Olofsson, S. O., and Borén, J. (2010). P221 lipid droplets in human macrophages recruit cytosolic phospholipase A2 and promote secretion of inflammatory mediators. Atheroscler. Suppl. 11, 62.
P221 lipid droplets in human macrophages recruit cytosolic phospholipase A2 and promote secretion of inflammatory mediators.Crossref | GoogleScholarGoogle Scholar |

Dichlberger, A., Schlager, S., Kovanen, P. T., and Schneider, W. J. (2016). Lipid droplets in activated mast cells – a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur. J. Pharmacol. 785, 59–69.
Lipid droplets in activated mast cells – a significant source of triglyceride-derived arachidonic acid for eicosanoid production.Crossref | GoogleScholarGoogle Scholar | 26164793PubMed |

Farese, R. V., and Walther, T. C. (2009). Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855–860.
Lipid droplets finally get a little R-E-S-P-E-C-T.Crossref | GoogleScholarGoogle Scholar | 19945371PubMed |

Fredrikson, G., Strålfors, P., Nilsson, N. O., and Belfrage, P. (1981). Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J. Biol. Chem. 256, 6311–6320.
| 7240206PubMed |

Gordon, G. B., Barcza, M. A., and Bush, M. E. (1977). Lipid accumulation in hypoxic tissue culture cells. Am. J. Pathol. 88, 663.
| 196505PubMed |

Grazul-Bilska, A. T., Khanthusaeng, V., Bass, C. S., Kaminski, S. L., Navanukraw, C., and Redmer, D. A. (2017). Lipid droplets in the ovine uterus during the estrous cycle: effects of nutrition, arginine, and FSH. Theriogenology 87, 212–220.
Lipid droplets in the ovine uterus during the estrous cycle: effects of nutrition, arginine, and FSH.Crossref | GoogleScholarGoogle Scholar | 27686034PubMed |

Gu, G., Gao, Q., Yuan, X., Huang, L., and Ge, L. (2012). Immunolocalization of adipocytes and prostaglandin E2 and its four receptor proteins EP1, EP2, EP3, and EP4 in the caprine cervix during spontaneous term labor. Biol. Reprod. 86, 159.
Immunolocalization of adipocytes and prostaglandin E2 and its four receptor proteins EP1, EP2, EP3, and EP4 in the caprine cervix during spontaneous term labor.Crossref | GoogleScholarGoogle Scholar | 22402965PubMed |

Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., Heldmaier, G., Maier, R., Theussl, C., and Eder, S. (2006). Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737.
Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.Crossref | GoogleScholarGoogle Scholar | 16675698PubMed |

Henault, M. A., and Killian, G. J. (1993). Neutral lipid droplets in bovine oviductal epithelium and lipid composition of epithelial cell homogenates. J. Dairy Sci. 76, 691–700.
Neutral lipid droplets in bovine oviductal epithelium and lipid composition of epithelial cell homogenates.Crossref | GoogleScholarGoogle Scholar | 7681859PubMed |

Herms, A., Bosch, M., Ariotti, N., Reddy, B. J., Fajardo, A., Fernandez-Vidal, A., Alvarez-Guaita, A., Fernandez-Rojo, M. A., Rentero, C., Tebar, F., Enrich, C., Geli, M. I., Parton, R. G., Gross, S. P., and Pol, A. (2013). Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr. Biol. 23, 1489–1496.
Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity.Crossref | GoogleScholarGoogle Scholar | 23871243PubMed |

Heyne, G. W., Plisch, E. H., Melberg, C. G., Sandgren, E. P., Peter, J. A., and Lipinski, R. J. (2015). A simple and reliable method for early pregnancy detection in inbred mice. J. Am. Assoc. Lab. Anim. Sci. 54, 368–371.
| 26224435PubMed |

Jenkins, C. M., Mancuso, D. J., Yan, W., Sims, H. F., Gibson, B., and Gross, R. W. (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975.
Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities.Crossref | GoogleScholarGoogle Scholar | 15364929PubMed |

Jocken, J. W. E., Smit, E., Goossens, G. H., Essers, Y. P. G., van Baak, M. A., Mensink, M., Saris, W. H. M., and Blaak, E. E. (2008). Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific. Histochem. Cell Biol. 129, 535–538.
Adipose triglyceride lipase (ATGL) expression in human skeletal muscle is type I (oxidative) fiber specific.Crossref | GoogleScholarGoogle Scholar |

Larcombe-McDouall, J., Buttell, N., Harrison, N., and Wray, S. (1999). In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J. Physiol. 518, 783–790.
In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle.Crossref | GoogleScholarGoogle Scholar | 10420014PubMed |

Larsen, K. S., Xu, J., Cermelli, S., Shu, Z., and Gross, S. P. (2008). BicaudalD actively regulates microtubule motor activity in lipid droplet transport. PLoS One 3, e3763.
BicaudalD actively regulates microtubule motor activity in lipid droplet transport.Crossref | GoogleScholarGoogle Scholar | 19018277PubMed |

Martinez-Lopez, N., Garcia-Macia, M., Sahu, S., Athonvarangkul, D., Liebling, E., Merlo, P., Cecconi, F., Schwartz, G. J., and Singh, R. (2016). Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab. 23, 113–127.
Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver.Crossref | GoogleScholarGoogle Scholar | 26698918PubMed |

Meadows, J. W., Pitzer, B., Brockman, D. E., and Myatt, L. (2005). Expression and localization of adipophilin and perilipin in human fetal membranes: association with lipid bodies and enzymes involved in prostaglandin synthesis. J. Clin. Endocrinol. Metab. 90, 2344–2350.
Expression and localization of adipophilin and perilipin in human fetal membranes: association with lipid bodies and enzymes involved in prostaglandin synthesis.Crossref | GoogleScholarGoogle Scholar | 15657374PubMed |

Narumiya, S., Sugimoto, Y., and Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79, 1193–1226.
Prostanoid receptors: structures, properties, and functions.Crossref | GoogleScholarGoogle Scholar | 10508233PubMed |

Neulen, J., Zahradnik, H. P., Flecken, U., and Breckwoldt, M. (1988). Effects of estradiol-17 beta and progesterone on the synthesis of prostaglandin F2 alpha, prostaglandin E2 and prostaglandin I2 by fibroblasts from human endometrium in vitro. Prostaglandins 36, 17–30.
Effects of estradiol-17 beta and progesterone on the synthesis of prostaglandin F2 alpha, prostaglandin E2 and prostaglandin I2 by fibroblasts from human endometrium in vitro.Crossref | GoogleScholarGoogle Scholar | 3051134PubMed |

Paciga, M., McCudden, C. R., Londos, C., DiMattia, G. E., and Wagner, G. F. (2003). Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells. J. Biol. Chem. 278, 49549–49554.
Targeting of big stanniocalcin and its receptor to lipid storage droplets of ovarian steroidogenic cells.Crossref | GoogleScholarGoogle Scholar | 14512426PubMed |

Reid, B. N., Ables, G. P., Otlivanchik, O. A., Schoiswohl, G., Zechner, R., Blaner, W. S., Goldberg, I. J., Schwabe, R. F., Chua, S. C., and Huang, L.-S. (2008). Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283, 13087–13099.
Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis.Crossref | GoogleScholarGoogle Scholar | 18337240PubMed |

Rial, E., Rodriguez-Sanchez, L., Gallardo-Vara, E., Zaragoza, P., Moyano, E., and Gonzalez-Barroso, M. M. (2010). Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. Biochim. Biophys. Acta 1797, 800–806.
Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function.Crossref | GoogleScholarGoogle Scholar | 20388489PubMed |

Schreiber, R., Xie, H., and Schweiger, M. (2019). Of mice and men: the physiological role of adipose triglyceride lipase (ATGL). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 880–899.
Of mice and men: the physiological role of adipose triglyceride lipase (ATGL).Crossref | GoogleScholarGoogle Scholar | 30367950PubMed |

Schubert, C. (2015). Low oxygen drives powerful contractions during labor. Biol. Reprod. 93, 82.
Low oxygen drives powerful contractions during labor.Crossref | GoogleScholarGoogle Scholar |

Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., Tornqvist, H., Zechner, R., and Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem. 281, 40236–40241.
Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism.Crossref | GoogleScholarGoogle Scholar | 17074755PubMed |

Tamura, K., Naraba, H., Hara, T., Nakamura, K., Yoshie, M., Kogo, H., and Tachikawa, E. (2016). A positive feedback loop between progesterone and microsomal prostaglandin E synthase-1-mediated PGE2 promotes production of both in mouse granulosa cells. Prostaglandins Other Lipid Mediat. 123, 56–62.
A positive feedback loop between progesterone and microsomal prostaglandin E synthase-1-mediated PGE2 promotes production of both in mouse granulosa cells.Crossref | GoogleScholarGoogle Scholar | 27174800PubMed |

Vincent, D. L., Meredith, S., and Inskeep, E. K. (1986). Advancement of uterine secretion of prostaglandin E2 by treatment with progesterone and transfer of asynchronous embryos. Endocrinology 119, 527–529.
Advancement of uterine secretion of prostaglandin E2 by treatment with progesterone and transfer of asynchronous embryos.Crossref | GoogleScholarGoogle Scholar | 3460797PubMed |

Welte, M. A. (2009). Fat on the move: intracellular motion of lipid droplets. Biochem. Soc. Trans. 37, 991.
Fat on the move: intracellular motion of lipid droplets.Crossref | GoogleScholarGoogle Scholar | 19754438PubMed |

Yagel, S., Hurwitz, A., Rosenn, B., and Keizer, N. (1987). Progesterone enhancement of prostaglandin E2 production by fetal placental macrophages. Am. J. Reprod. Immunol. Microbiol. 14, 45–48.
Progesterone enhancement of prostaglandin E2 production by fetal placental macrophages.Crossref | GoogleScholarGoogle Scholar | 3475985PubMed |

Yamaguchi, T., Fujikawa, N., Nimura, S., Tokuoka, Y., Tsuda, S., Aiuchi, T., Kato, R., Obama, T., and Itabe, H. (2015). Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: protein profiles and the morphological change induced by hormone stimulation. Biochim. Biophys. Acta 1851, 1285–1295.
Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: protein profiles and the morphological change induced by hormone stimulation.Crossref | GoogleScholarGoogle Scholar | 26143378PubMed |

Yeaman, S. J., Smith, G. M., Jepson, C. A., Wood, S. L., and Emmison, N. (1994). The multifunctional role of hormone-sensitive lipase in lipid metabolism. Adv. Enzyme Regul. 34, 355–370.
The multifunctional role of hormone-sensitive lipase in lipid metabolism.Crossref | GoogleScholarGoogle Scholar | 7942281PubMed |

Zhu, H. S., Dou, J. X., Liu, T., and Lin, M. W. (2008). Change of plasma progesterone level of mouse at different phases. J. Anhui Agric. Sci. 36, 5901, 5961.

Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., and Zechner, R. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386.
Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.Crossref | GoogleScholarGoogle Scholar | 15550674PubMed |