Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Cryopreservation of equine oocytes: looking into the crystal ball*

Tine De Coster https://orcid.org/0000-0002-0415-2744 A C , Daniel Angel Velez https://orcid.org/0000-0001-8777-4065 A C , Ann Van Soom https://orcid.org/0000-0001-5010-6311 A , Henri Woelders B and Katrien Smits A
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

B Wageningen Livestock Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.

C Corresponding authors. Email: tine.decoster@ugent.be; daniel.angelvelez@ugent.be

Reproduction, Fertility and Development 32(5) 453-467 https://doi.org/10.1071/RD19229
Submitted: 17 June 2019  Accepted: 14 November 2019   Published: 18 February 2020

Abstract

In vitro embryo production has evolved rapidly in the horse over the past decade, but blastocyst rates from vitrified equine oocytes remain quite poor and further research is needed to warrant application. Oocyte vitrification is affected by several technical and biological factors. In the horse, short exposure of immature oocytes to the combination of permeating and non-permeating cryoprotective agents has been associated with the best results so far. High cooling and warming rates are also crucial and can be obtained by using minimal volumes and open cryodevices. Vitrification of in vivo-matured oocytes has yielded better results, but is less practical. The presence of the corona radiata seems to partially protect those factors that are necessary for the construction of the normal spindle and for chromosome alignment, but multiple layers of cumulus cells may impair permeation of cryoprotective agents. In addition to the spindle, the oolemma and mitochondria are also particularly sensitive to vitrification damage, which should be minimised in future vitrification procedures. This review presents promising protocols and novel strategies in equine oocyte vitrification, with a focus on blastocyst development and foal production as most reliable outcome parameters.

Graphical Abstract Image

Additional keywords: blastocyst, cumulus cells, intracytoplasmic sperm injection, maturation, vitrification.


References

Abe, H., Yamashita, S., Satoh, T., and Hoshi, H. (2002). Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 61, 57–66.
Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 11774376PubMed |

Adams, G. P., Ratto, M. H., Collins, C. W., and Bergfelt, D. R. (2009). Artificial insemination in South American camelids and wild equids. Theriogenology 71, 166–175.
Artificial insemination in South American camelids and wild equids.Crossref | GoogleScholarGoogle Scholar | 18922569PubMed |

Agca, Y., Liu, J., Peter, A. T., Critser, E. S., and Critser, J. K. (1998). Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Mol. Reprod. Dev. 49, 408–415.
Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics.Crossref | GoogleScholarGoogle Scholar | 9508092PubMed |

Agca, Y., Liu, J., Rutledge, J. J., Critser, E. S., and Critser, J. K. (2000). Effect of osmotic stress on the developmental competence of germinal vesicle and metaphase II stage bovine cumulus oocyte complexes and its relevance to cryopreservation. Mol. Reprod. Dev. 55, 212–219.
Effect of osmotic stress on the developmental competence of germinal vesicle and metaphase II stage bovine cumulus oocyte complexes and its relevance to cryopreservation.Crossref | GoogleScholarGoogle Scholar | 10618661PubMed |

Al-Hasani, S., Kirsch, J., Diedrich, K., Blanke, S., van der Ven, H., and Krebs, D. (1989). Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes. Hum. Reprod. 4, 77–79.
Successful embryo transfer of cryopreserved and in-vitro fertilized rabbit oocytes.Crossref | GoogleScholarGoogle Scholar | 2708506PubMed |

Ambruosi, B., Lacalandra, G. M., Iorga, A. I., De Santis, T., Mugnier, S., Matarrese, R., Goudet, G., and Dell’Aquila, M. E. (2009). Cytoplasmic lipid droplets and mitochondrial distribution in equine oocytes: implications on oocyte maturation, fertilization and developmental competence after ICSI. Theriogenology 71, 1093–1104.
Cytoplasmic lipid droplets and mitochondrial distribution in equine oocytes: implications on oocyte maturation, fertilization and developmental competence after ICSI.Crossref | GoogleScholarGoogle Scholar | 19167745PubMed |

Badrzadeh, H., Najmabadi, S., Paymani, R., Macaso, T., Azadbadi, Z., and Ahmady, A. (2010). Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos. Eur. J. Obstet. Gynecol. Reprod. Biol. 151, 70–71.
Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 20423751PubMed |

Berthelot-Ricou, A., Perrin, J., di Giorgio, C., de Meo, M., Botta, A., and Courbiere, B. (2011). Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by Comet assay. Fertil. Steril. 96, 1002–1007.
Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by Comet assay.Crossref | GoogleScholarGoogle Scholar | 21890131PubMed |

Best, B. P. (2015). Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 18, 422–436.
Cryoprotectant toxicity: facts, issues, and questions.Crossref | GoogleScholarGoogle Scholar | 25826677PubMed |

Bielanski, A., and Vajta, G. (2009). Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum. Reprod. 24, 2457–2467.
Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units.Crossref | GoogleScholarGoogle Scholar | 19561041PubMed |

Bodó, I., and Alderson, L. (2005). The numerical and genetic status of native horse and pony breeds in Britain. In ‘Conservation genetics of endangered horse breeds’. (Ed. B. Langlois.) pp. 91–98. (Wageningen Academic Publishers: Bled.)

Bonetti, A., Cervi, M., Tomei, F., Marchini, M., Ortolani, F., and Manno, M. (2011). Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices. Fertil. Steril. 95, 928–935.
Ultrastructural evaluation of human metaphase II oocytes after vitrification: closed versus open devices.Crossref | GoogleScholarGoogle Scholar | 20864096PubMed |

Brambillasca, F., Guglielmo, M. C., Coticchio, G., Mignini Renzini, M., Dal Canto, M., and Fadini, R. (2013). The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 30, 1531–1539.
The current challenges to efficient immature oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar | 24114631PubMed |

Cai, H., Niringiyumukiza, J. D., Li, Y., Lai, Q., Jia, Y., Su, P., and Xiang, W. (2018). Open versus closed vitrification system of human oocytes and embryos: a systematic review and meta-analysis of embryologic and clinical outcomes. Reprod. Biol. Endocrinol. 16, 123.
Open versus closed vitrification system of human oocytes and embryos: a systematic review and meta-analysis of embryologic and clinical outcomes.Crossref | GoogleScholarGoogle Scholar | 30522492PubMed |

Canesin, H. S., Brom-de-Luna, J. G., Choi, Y. H., Ortiz, I., Diaw, M., and Hinrichs, K. (2017). Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 75, 52–59.
Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage.Crossref | GoogleScholarGoogle Scholar | 28209499PubMed |

Canesin, H. S., Brom-de-Luna, J. G., Choi, Y. H., Pereira, A. M., Macedo, G. G., and Hinrichs, K. (2018). Vitrification of germinal-vesicle stage equine oocytes: effect of cryoprotectant exposure time on in-vitro embryo production. Cryobiology 81, 185–191.
Vitrification of germinal-vesicle stage equine oocytes: effect of cryoprotectant exposure time on in-vitro embryo production.Crossref | GoogleScholarGoogle Scholar | 29305835PubMed |

Cha, S. K., Kim, B. Y., Kim, M. K., Kim, Y. S., Lee, W. S., Yoon, T. K., and Lee, D. R. (2011). Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin. Exp. Reprod. Med. 38, 24–30.
Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar | 22384414PubMed |

Chankitisakul, V., Somfai, T., Inaba, Y., Techakumphu, M., and Nagai, T. (2013). Supplementation of maturation medium with l-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology 79, 590–598.
Supplementation of maturation medium with l-carnitine improves cryo-tolerance of bovine in vitro matured oocytes.Crossref | GoogleScholarGoogle Scholar | 23261307PubMed |

Chen, T., Fowler, A., and Toner, M. (2000). Literature review: supplemented phase diagram of the trehalose–water binary mixture. Cryobiology 40, 277–282.
Literature review: supplemented phase diagram of the trehalose–water binary mixture.Crossref | GoogleScholarGoogle Scholar | 10860627PubMed |

Chen, H., Zhang, L., Deng, T., Zou, P., Wang, Y., Quan, F., and Zhang, Y. (2016). Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 86, 868–878.
Effects of oocyte vitrification on epigenetic status in early bovine embryos.Crossref | GoogleScholarGoogle Scholar | 27068359PubMed |

Chian, R.-C., and Cao, Y.-X. (2014). In vitro maturation of immature human oocytes for clinical application. Methods Mol. Biol. 1154, 271–288.
In vitro maturation of immature human oocytes for clinical application.Crossref | GoogleScholarGoogle Scholar | 24782014PubMed |

Claes, A., Galli, C., Colleoni, S., Necchi, D., Lazzari, G., Deelen, C., Beitsma, M., and Stout, T. (2016). Factors influencing oocyte recovery and in-vitro production of equine embryos in a commercial OPU/ICSI program. J. Equine Vet. Sci. 41, 68–69.
Factors influencing oocyte recovery and in-vitro production of equine embryos in a commercial OPU/ICSI program.Crossref | GoogleScholarGoogle Scholar |

Cobo, A., Serra, V., Garrido, N., Olmo, I., Pellicer, A., and Remohi, J. (2014). Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil. Steril. 102, 1006–1015.e4.
Obstetric and perinatal outcome of babies born from vitrified oocytes.Crossref | GoogleScholarGoogle Scholar | 25064408PubMed |

Coello, A., Campos, P., Remohí, J., Meseguer, M., and Cobo, A. (2016). A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J. Assist. Reprod. Genet. 33, 413–421.
A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study.Crossref | GoogleScholarGoogle Scholar | 26754749PubMed |

Criado, E., Moalli, F., Polentarutti, N., Albani, E., Morreale, G., Menduni, F., and Levi-Setti, P. E. (2011). Experimental contamination assessment of a novel closed ultravitrification device. Fertil. Steril. 95, 1777–1779.
Experimental contamination assessment of a novel closed ultravitrification device.Crossref | GoogleScholarGoogle Scholar | 21269610PubMed |

Crowe, J. H., Hoekstra, F. A., and Crowe, L. M. (1992). Anhydrobiosis. Annu. Rev. Physiol. 54, 579–599.
Anhydrobiosis.Crossref | GoogleScholarGoogle Scholar | 1562184PubMed |

Cuervo-Arango, J., Claes, A. N., and Stout, T. A. (2019). The recipient’s day after ovulation and the number of corpora lutea influence the likelihood of pregnancy in mares following transfer of ICSI frozen embryos. Theriogenology 135, 181–188.
The recipient’s day after ovulation and the number of corpora lutea influence the likelihood of pregnancy in mares following transfer of ICSI frozen embryos.Crossref | GoogleScholarGoogle Scholar | 31226608PubMed |

Curcio, B. R., Gastal, M. O., Pereira, G. R., Corcini, C. D., Landim-Alvarenga, F. C., Barros, S. S., Nogueira, C. E. W., Deschamps, J. C., and Gastal, E. L. (2014a). Ultrastructural morphology and nuclear maturation rates of immature equine oocytes vitrified with different solutions and exposure times. J. Equine Vet. Sci. 34, 632–640.
Ultrastructural morphology and nuclear maturation rates of immature equine oocytes vitrified with different solutions and exposure times.Crossref | GoogleScholarGoogle Scholar |

Curcio, B. R., Pereira, G. R., Antunes, L. I., Boff, A. N., Dos Santos, F. C. C., and Lucia, Curcio, B. R., Pereira, G. R., Antunes, L. I., Boff, A. N., Dos Santos, F. C. C., and Lucia, (2014b). Vitrification of equine oocytes with a polyvinyl alcohol after in vitro maturation with equine growth hormone and insulin-like growth factor-I. Cryo Letters 35, 90–94.

da Silveira, J. C., Veeramachaneni, D. N. R., Winger, Q. A., Carnevale, E. M., and Bouma, G. J. (2012). Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 86, 71.
Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 22116803PubMed |

da Silveira, J. C., Andrade, G. M., del Collado, M., Sampaio, R. V., Sangalli, J. R., Silva, L. A., Pinaffi, F. V. L., Jardim, I. B., Cesar, M. C., Nogueira, M. F. G., Cesar, A. S. M., Coutinho, L. L., Pereira, R. W., Perecin, F., and Meirelles, F. V. (2017). Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One 12, e0179451.
Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 28922408PubMed |

de Leon, P. M. M., Campos, V. F., Corcini, C. D., Santos, E. C. S., and Rambo, G. (2012). Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker. Theriogenology 77, 21–27.
Cryopreservation of immature equine oocytes, comparing a solid surface vitrification process with open pulled straws and the use of a synthetic ice blocker.Crossref | GoogleScholarGoogle Scholar |

Decrock, E., Vinken, M., De Vuyst, E., Krysko, D. V., D’Herde, K., Vanhaecke, T., Vandenabeele, P., Rogiers, V., and Leybaert, L. (2009). Connexin-related signaling in cell death: to live or let die? Cell Death Differ. 16, 524–536.
Connexin-related signaling in cell death: to live or let die?Crossref | GoogleScholarGoogle Scholar | 19197295PubMed |

Ducheyne, K. D., Rizzo, M., Daels, P. F., Stout, T. A. E., and de Ruijter-Villani, M. (2019). Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle. Reprod. Fertil. Dev. , 1330–1338.
Vitrifying immature equine oocytes impairs their ability to correctly align the chromosomes on the MII spindle.Crossref | GoogleScholarGoogle Scholar |

Ducro, B. J., Schurink, A., Bastiaansen, J. W. M., Boegheim, I. J. M., van Steenbeek, F. G., Vos-Loohuis, M., Nijman, I. J., Monroe, G. R., Hellinga, I., Dibbits, B. W., Back, W., and Leegwater, P. A. J. (2015). A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses. BMC Genomics 16, 761.
A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses.Crossref | GoogleScholarGoogle Scholar | 26452345PubMed |

Edgar, D. H., and Gook, D. A. (2012). A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum. Reprod. Update 18, 536–554.
A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 22537859PubMed |

Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria and redox potential in ageing oocytes. Reprod. Biomed. Online 8, 45–58.
Spindles, mitochondria and redox potential in ageing oocytes.Crossref | GoogleScholarGoogle Scholar | 14759287PubMed |

Eroglu, A., Toner, M., and Toth, T. L. (2002). Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil. Steril. 77, 152–158.
Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes.Crossref | GoogleScholarGoogle Scholar | 11779606PubMed |

Eroglu, A., Lawitts, J. A., Toner, M., and Toth, T. L. (2003). Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development. Cryobiology 46, 121–134.
Quantitative microinjection of trehalose into mouse oocytes and zygotes, and its effect on development.Crossref | GoogleScholarGoogle Scholar | 12686202PubMed |

Eroglu, A., Bailey, S. E., Toner, M., and Toth, T. L. (2009). Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol. Reprod. 80, 70–78.
Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide.Crossref | GoogleScholarGoogle Scholar | 18815355PubMed |

Fahy, G. M., Levy, D. I., and Ali, S. E. (1987). Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 24, 196–213.
Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions.Crossref | GoogleScholarGoogle Scholar | 3595164PubMed |

Fahy, G. M., Wowk, B., Wu, J., and Paynter, S. (2004). Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48, 22–35.
Improved vitrification solutions based on the predictability of vitrification solution toxicity.Crossref | GoogleScholarGoogle Scholar | 14969679PubMed |

Ferraz, M. A. M. M., Rho, H. S., Hemerich, D., Henning, H. H. W., van Tol, H. T. A., Holker, M., Besenfelder, U., Mokry, M., Vos, P. L. A. M., Stout, T. A. E., Le Gac, S., and Gadella, B. M. (2018). An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat. Commun. 9, 4934.
An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming.Crossref | GoogleScholarGoogle Scholar |

Fujihira, T., Nagai, H., and Fukui, Y. (2005). Relationship between equilibration times and the presence of cumulus cells, and effect of Taxol treatment for vitrification of in vitro matured porcine oocytes. Cryobiology 51, 339–343.
Relationship between equilibration times and the presence of cumulus cells, and effect of Taxol treatment for vitrification of in vitro matured porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 16183050PubMed |

Fuku, E., Kojima, T., Shioya, Y., Marcus, G. J., and Downey, B. R. (1992). In vitro fertilization and development of frozen–thawed bovine oocytes. Cryobiology 29, 485–492.
In vitro fertilization and development of frozen–thawed bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1395686PubMed |

Gallardo, M., Hebles, M., Migueles, B., Dorado, M., Aguilera, L., Gonzalez, M., Piqueras, P., Montero, L., Sanchez-Martin, P., Sanchez-Martin, F., and Risco, R. (2016). Thermal and clinical performance of a closed device designed for human oocyte vitrification based on the optimization of the warming rate. Cryobiology 73, 40–46.
Thermal and clinical performance of a closed device designed for human oocyte vitrification based on the optimization of the warming rate.Crossref | GoogleScholarGoogle Scholar | 27312427PubMed |

Gambini, A., and Maserati, M. (2017). A journey through horse cloning. Reprod. Fertil. Dev. 30, 8–17.
A journey through horse cloning.Crossref | GoogleScholarGoogle Scholar | 29539299PubMed |

Guo, X. F., Yu, X. L., Zhang, F., Wu, H., Pei, X. Z., Li, X. X., and Li, Y. H. (2017). Effect of liquid helium vitrification on cytoskeleton of immature cattle oocytes. Anim. Reprod. Sci. 187, 91–99.
Effect of liquid helium vitrification on cytoskeleton of immature cattle oocytes.Crossref | GoogleScholarGoogle Scholar | 29055512PubMed |

Gupta, M. K., Uhm, S. J., and Lee, H. T. (2007). Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification. Theriogenology 67, 238–248.
Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification.Crossref | GoogleScholarGoogle Scholar | 16963114PubMed |

Hinrichs, K. (2010). The equine oocyte: factors affecting meiotic and developmental competence. Mol. Reprod. Dev. 77, 651–661.
The equine oocyte: factors affecting meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 20652997PubMed |

Hinrichs, K. (2018). Assisted reproductive techniques in mares. Reprod. Domest. Anim. 53, 4–13.
Assisted reproductive techniques in mares.Crossref | GoogleScholarGoogle Scholar | 30238661PubMed |

Hinrichs, K., Choi, Y. H., Love, L. B., Varner, D. D., Love, C. C., and Walckenaer, B. E. (2005). Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biol. Reprod. 72, 1142–1150.
Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 15647456PubMed |

Hirata, S., Fukasawa, H., Wakayama, S., Wakayama, T., and Hoshi, K. (2011). Generation of healthy cloned mice using enucleated cryopreserved oocytes. Cell. Reprogram. 13, 7–11.
Generation of healthy cloned mice using enucleated cryopreserved oocytes.Crossref | GoogleScholarGoogle Scholar | 20964481PubMed |

Hochi, S., Fujimoto, T., Choi, Y. H., Braun, J., and Oguri, N. (1994). Cryopreservation of equine oocytes by 2-step freezing. Theriogenology 42, 1085–1094.
Cryopreservation of equine oocytes by 2-step freezing.Crossref | GoogleScholarGoogle Scholar | 16727612PubMed |

Hochi, S., Kozawa, M., and Fujimoto, T. (1996). In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification. Cryobiology 310, 300–310.
In vitro maturation and transmission electron microscopic observation of horse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar |

Hou, Y. P., Dai, Y. P., Zhu, S. E., Zhu, H. B., Wu, T. Y., Gong, G. C., Wang, H. P., Wang, L. L., Liu, Y., Li, R., Wan, R., and Li, N. (2005). Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology 64, 1381–1391.
Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term.Crossref | GoogleScholarGoogle Scholar | 16139614PubMed |

Ishida, G. M., Saito, H., Ohta, N., Takahashi, T., Ito, M. M., Saito, T., Nakahara, K., and Hiroi, M. (1997). The optimal equilibration time for mouse embryos frozen by vitrification with trehalose. Hum. Reprod. 12, 1259–1262.
The optimal equilibration time for mouse embryos frozen by vitrification with trehalose.Crossref | GoogleScholarGoogle Scholar | 9222013PubMed |

Jacobson, C. C., Choi, Y. H., Hayden, S. S., and Hinrichs, K. (2010). Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology 73, 1116–1126.
Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 20202674PubMed |

Kan, A., Kilani, S., Tilia, L., Mitchell, F., Burns, K., and Chapman, M. (2004). Pregnancy from intracytoplasmic injection of a frozen–thawed oocyte. Aust. N. Z. J. Obstet. Gynaecol. 44, 262–263.
Pregnancy from intracytoplasmic injection of a frozen–thawed oocyte.Crossref | GoogleScholarGoogle Scholar | 15191455PubMed |

Kasai, M. (1997). Vitrification: refined strategy for the cryopreservation of mammalian embryos. J. Mamm. Ova Res. 14, 17–28.
Vitrification: refined strategy for the cryopreservation of mammalian embryos.Crossref | GoogleScholarGoogle Scholar |

Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |

Larman, M. G., Minasi, M. G., Rienzi, L., and Gardner, D. K. (2007). Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod. Biomed. Online 15, 692–700.
Maintenance of the meiotic spindle during vitrification in human and mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 18062868PubMed |

Lazaraviciute, G., Kauser, M., Bhattacharya, S., Haggarty, P., and Bhattacharya, S. (2014). A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum. Reprod. Update 20, 840–852.
A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously.Crossref | GoogleScholarGoogle Scholar | 24961233PubMed |

Leegwater, P. A., Vos-Loohuis, M., Ducro, B. J., Boegheim, I. J., van Steenbeek, F. G., Nijman, I. J., Monroe, G. R., Bastiaansen, J. W. M., Dibbits, B. W., van de Goor, L. H., Hellinga, I., Back, W., and Schurink, A. (2016). Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7. BMC Genomics 17, 839.
Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7.Crossref | GoogleScholarGoogle Scholar | 27793082PubMed |

Lestari, S. W., Ilato, K. F., Pratama, M. I. A., Fitriyah, N. N., Pangestu, M., Pratama, G., and Margiana, R. (2018). Sucrose ‘versus’ trehalose cryoprotectant modification in oocyte vitrification: a study of embryo development. Biomed. Pharmacol. J. 11, 97–104.
Sucrose ‘versus’ trehalose cryoprotectant modification in oocyte vitrification: a study of embryo development.Crossref | GoogleScholarGoogle Scholar |

Levi Setti, P. E., Albani, E., Morenghi, E., Morreale, G., Delle Piane, L., Scaravelli, G., and Patrizio, P. (2013). Comparative analysis of fetal and neonatal outcomes of pregnancies from fresh and cryopreserved/thawed oocytes in the same group of patients. Fertil. Steril. 100, 396–401.
Comparative analysis of fetal and neonatal outcomes of pregnancies from fresh and cryopreserved/thawed oocytes in the same group of patients.Crossref | GoogleScholarGoogle Scholar | 23608156PubMed |

Li, W., Zhou, X., Wang, H., and Liu, B. (2012). Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation. Cryo Letters 33, 144–150.
| 22576118PubMed |

Liu, Y., Du, Y., Lin, L., Li, J., Kragh, P. M., Kuwayama, M., Bolund, L., Yang, H., and Vajta, G. (2008). Comparison of efficiency of open pulled straw (OPS) and Cryotop vitrification for cryopreservation of in vitro matured pig oocytes. Cryo Letters 29, 315–320.
| 19137194PubMed |

Macedo, M. C. J., Deschamps, J. C., Lucia, T. J., Bordignon, J., Serret, C. G., Rambo, G., Pivato, I., and Schmitt, E. (2006). In vitro penetration of fresh and vitrified swine oocytes by homologous spermatozoa using different incubation systems. Anim. Reprod. Sci. 92, 334–348.
In vitro penetration of fresh and vitrified swine oocytes by homologous spermatozoa using different incubation systems.Crossref | GoogleScholarGoogle Scholar |

Maclellan, L. J., Lane, M., Sims, M. M., and Squires, E. L. (2001). Effect of sucrose or trehalose on vitrification of equine oocytes 12 h or 24 h after the onset of maturation, evaluated after ICSI. Theriogenology 55, 310.
Effect of sucrose or trehalose on vitrification of equine oocytes 12 h or 24 h after the onset of maturation, evaluated after ICSI.Crossref | GoogleScholarGoogle Scholar |

Maclellan, L. J., Carnevale, E. M., Coutinho da Silva, M. A., Scoggin, C. F., Bruemmer, J. E., and Squires, E. L. (2002). Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares. Theriogenology 58, 911–919.
Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares.Crossref | GoogleScholarGoogle Scholar | 12212891PubMed |

Maclellan, L. J., Stokes, J. E., Preis, K. A., McCue, P. M., and Carnevale, E. M. (2010). Vitrification, warming, ICSI and transfer of equine oocytes matured in vivo. Anim. Reprod. Sci. 121, 260–261.
Vitrification, warming, ICSI and transfer of equine oocytes matured in vivo.Crossref | GoogleScholarGoogle Scholar |

Mandawala, A. A., Harvey, S. C., Roy, T. K., and Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: current progress and future prospects. Theriogenology 86, 1637–1644.
Cryopreservation of animal oocytes and embryos: current progress and future prospects.Crossref | GoogleScholarGoogle Scholar | 27555525PubMed |

Martino, A., Pollard, J. W., and Leibo, S. P. (1996). Effect of chilling bovine oocytes on their developmental competence. Mol. Reprod. Dev. 45, 503–512.
Effect of chilling bovine oocytes on their developmental competence.Crossref | GoogleScholarGoogle Scholar | 8956289PubMed |

Maserati, M., and Mutto, A. (2016). In vitro production of equine embryos and cloning: today’s status. J. Equine Vet. Sci. 41, 42–50.
In vitro production of equine embryos and cloning: today’s status.Crossref | GoogleScholarGoogle Scholar |

Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, C125–C142.
Freezing of living cells: mechanisms and implications.Crossref | GoogleScholarGoogle Scholar | 6383068PubMed |

Mazur, P., and Paredes, E. (2016). Roles of intracellular ice formation, vitrification of cell water, and recrystallisation of intracellular ice on the survival of mouse embryos and oocytes. Reprod. Fertil. Dev. 28, 1088–1091.
Roles of intracellular ice formation, vitrification of cell water, and recrystallisation of intracellular ice on the survival of mouse embryos and oocytes.Crossref | GoogleScholarGoogle Scholar |

Minasi, M. G., Fabozzi, G., Casciani, V., Ferrero, S., Litwicka, K., and Greco, E. (2012). Efficiency of slush nitrogen vitrification of human oocytes vitrified with or without cumulus cells in relation to survival rate and meiotic spindle competence. Fertil. Steril. 97, 1220–1225.
Efficiency of slush nitrogen vitrification of human oocytes vitrified with or without cumulus cells in relation to survival rate and meiotic spindle competence.Crossref | GoogleScholarGoogle Scholar | 22401811PubMed |

Moawad, A. R., Choi, I., Zhu, J., and Campbell, K. H. S. (2011). Ovine oocytes vitrified at germinal vesicle stage as cytoplast recipients for somatic cell nuclear transfer (SCNT). Cell. Reprogram. 13, 289–296.
Ovine oocytes vitrified at germinal vesicle stage as cytoplast recipients for somatic cell nuclear transfer (SCNT).Crossref | GoogleScholarGoogle Scholar | 21718110PubMed |

Mogas, T. (2019). Update on the vitrification of bovine oocytes and invitro-produced embryos. Reprod. Fertil. Dev. 31, 105–117.
Update on the vitrification of bovine oocytes and invitro-produced embryos.Crossref | GoogleScholarGoogle Scholar |

Morató, R., Mogas, T., and Maddox-Hyttel, P. (2008). Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification. Mol. Reprod. Dev. 75, 1318–1326.
Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification.Crossref | GoogleScholarGoogle Scholar | 18247367PubMed |

Morris, L. H. A. (2018). The development of in vitro embryo production in the horse. Equine Vet. J. 50, 712–720.
The development of in vitro embryo production in the horse.Crossref | GoogleScholarGoogle Scholar |

Nowak, A., Kochan, J., Papis, K., and Okólski, A. (2014). Studies on survival of horse oocytes after Rapid-i method vitrification. J. Equine Vet. Sci. 34, 675–679.
Studies on survival of horse oocytes after Rapid-i method vitrification.Crossref | GoogleScholarGoogle Scholar |

Oda, K., Gibbons, W. E., and Leibo, S. P. (1992). Osmotic shock of fertilized mouse ova. J. Reprod. Fertil. 95, 737–747.
Osmotic shock of fertilized mouse ova.Crossref | GoogleScholarGoogle Scholar | 1404091PubMed |

Olivera, R., Moro, L. N., Jordan, R., Luzzani, C., Miriuka, S., Radrizzani, M., Donadeu, F. X., and Vichera, G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One 11, e0164049.
In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors.Crossref | GoogleScholarGoogle Scholar | 27732616PubMed |

Orief, Y., Schultze-Mosgau, A., Dafopoulos, K., and Al-Hasani, S. (2005). Vitrification: will it replace the conventional gamete cryopreservation techniques? Middle East Fertil. Soc. J. 10, 171–184.

Ortiz-Escribano, N. (2017). Vitrification of oocytes and embryos in cattle and horses: as clear as a glass? Ph.D. Thesis, University of Ghent, Department of Reproduction, Faculty of Veterinary Medicine, Merelbeke, Belgium.

Ortiz-Escribano, N., Smits, K., Piepers, S., Van den Abbeel, E., Woelders, H., and Van Soom, A. (2016). Role of cumulus cells during vitrification and fertilization of mature bovine oocytes: effects on survival, fertilization, and blastocyst development. Theriogenology 86, 635–641.
Role of cumulus cells during vitrification and fertilization of mature bovine oocytes: effects on survival, fertilization, and blastocyst development.Crossref | GoogleScholarGoogle Scholar | 27056413PubMed |

Ortiz-Escribano, N., Bogado Pascottini, O., Woelders, H., Vandenberghe, L., De Schauwer, C., Govaere, J., Van den Abbeel, E., Vullers, T., Ververs, C., Roels, K., Van De Velde, M., Van Soom, A., and Smits, K. (2017). An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet. J. 50, 391–397.
An improved vitrification protocol for equine immature oocytes, resulting in a first live foal.Crossref | GoogleScholarGoogle Scholar | 28833413PubMed |

Paredes, E., and Mazur, P. (2013). The survival of mouse oocytes shows little or no correlation with the vitrification or freezing of the external medium, but the ability of the medium to vitrify is affected by its solute concentration and by the cooling rate. Cryobiology 67, 386–390.
The survival of mouse oocytes shows little or no correlation with the vitrification or freezing of the external medium, but the ability of the medium to vitrify is affected by its solute concentration and by the cooling rate.Crossref | GoogleScholarGoogle Scholar | 24056038PubMed |

Park, M. J., Lee, S. E., Kim, E. Y., Lee, J. B., Jeong, C. J., and Park, S. P. (2015). Effective oocyte vitrification and survival techniques for bovine somatic cell nuclear transfer. Cell. Reprogram. 17, 199–210.
Effective oocyte vitrification and survival techniques for bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 25984830PubMed |

Parkening, T. A., Tsunoda, Y., and Chang, M. C. (1976). Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen–thawed mouse eggs. J. Exp. Zool. 197, 369–374.
Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen–thawed mouse eggs.Crossref | GoogleScholarGoogle Scholar | 965915PubMed |

Parmegiani, L., Cognigni, G. E., Bernardi, S., Cuomo, S., Ciampaglia, W., Infante, F. E., Tabarelli de Fatis, C., Arnone, A., Maccarini, A. M., and Filicori, M. (2011). Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes. Reprod. Biomed. Online 23, 505–512.
Efficiency of aseptic open vitrification and hermetical cryostorage of human oocytes.Crossref | GoogleScholarGoogle Scholar | 21843968PubMed |

Pegg, D. E. (2007). Principles of Cryopreservation. In ‘Cryopreservation and Freeze-Drying Protocols, Methods in Molecular Biology’. (Eds J. G. Day and G. N. Stacey) pp. 39–57. (Humana Press: Totowa.) 10.1007/978-1-59745-362-2_3.

Pope, C. E., Gomez, M. C., Kagawa, N., Kuwayama, M., Leibo, S. P., and Dresser, B. L. (2012). In vivo survival of domestic cat oocytes after vitrification, intracytoplasmic sperm injection and embryo transfer. Theriogenology 77, 531–538.
In vivo survival of domestic cat oocytes after vitrification, intracytoplasmic sperm injection and embryo transfer.Crossref | GoogleScholarGoogle Scholar | 22015162PubMed |

Rall, W. F., and Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification. Nature 313, 573–575.
Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification.Crossref | GoogleScholarGoogle Scholar | 3969158PubMed |

Rao, W., Huang, H., Wang, H., Zhao, S., Dumbleton, J., Zhao, G., and He, X. (2015). Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl. Mater. Interfaces 7, 5017–5028.
Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant.Crossref | GoogleScholarGoogle Scholar | 25679454PubMed |

Rienzi, L., Romano, S., Albricci, L., Maggiulli, R., Capalbo, A., Baroni, E., Colamaria, S., Sapienza, F., and Ubaldi, F. (2010). Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum. Reprod. 25, 66–73.
Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study.Crossref | GoogleScholarGoogle Scholar | 19861328PubMed |

Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A. R., Kaser, D. J., Ubaldi, F. M., Vanderpoel, S., and Racowsky, C. (2017). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update 23, 139–155.
Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance.Crossref | GoogleScholarGoogle Scholar | 27827818PubMed |

Rojas, C., Palomo, M. J., Albarracín, J. L., and Mogas, T. (2004). Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49, 211–220.
Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments.Crossref | GoogleScholarGoogle Scholar | 15615607PubMed |

Rosati, I., Maclellan, L. J., Ariu, F., Bogliolo, L., Zedda, M. T., Pau, S., Carnevale, M. C., and Ledda, S. (2012). Vitrification of GV and IVM horse oocytes with two different equilibration methods. Reprod. Dom. Anim. 47, 436–437.
Vitrification of GV and IVM horse oocytes with two different equilibration methods.Crossref | GoogleScholarGoogle Scholar |

Roser, J. F., and Meyers-Brown, G. (2012). Superovulation in the mare: a work in progress. J. Equine Vet. Sci. 32, 376–386.
Superovulation in the mare: a work in progress.Crossref | GoogleScholarGoogle Scholar |

Sáez, J. C., Berthoud, V. M., Branes, M. C., Martinez, A. D., and Beyer, E. C. (2003). Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 83, 1359–1400.
Plasma membrane channels formed by connexins: their regulation and functions.Crossref | GoogleScholarGoogle Scholar | 14506308PubMed |

Santos, E. C. da S., Somfai, T., Appeltant, R., Dang-Nguyen, T. Q., Noguchi, J., Kaneko, H., and Kikuchi, K. (2017). Effects of polyethylene glycol and a synthetic ice blocker during vitrification of immature porcine oocytes on survival and subsequent embryo development. Anim. Sci. J. 88, 1042–1048.
Effects of polyethylene glycol and a synthetic ice blocker during vitrification of immature porcine oocytes on survival and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar |

Saragusty, J., and Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141, 1–19.
Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification.Crossref | GoogleScholarGoogle Scholar | 20974741PubMed |

Sherman, J. K., and Lin, T. P. (1958). Survival of unfertilized mouse eggs during freezing and thawing. Proc. Soc. Exp. Biol. Med. 98, 902–905.
Survival of unfertilized mouse eggs during freezing and thawing.Crossref | GoogleScholarGoogle Scholar | 13591382PubMed |

Smits, K., Hoogewijs, M., Woelders, H., Daels, P., and Van Soom, A. (2012). Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids. Reprod. Domest. Anim. 47, 239–248.
Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids.Crossref | GoogleScholarGoogle Scholar | 22827377PubMed |

Snoeck, F., Szymanska, K. J., Sarrazin, S., Ortiz-Escribano, N., Leybaert, L., and Van Soom, A. (2018). Blocking connexin channels during vitrification of immature cat oocytes improves maturation capacity after warming. Theriogenology 122, 144–149.
Blocking connexin channels during vitrification of immature cat oocytes improves maturation capacity after warming.Crossref | GoogleScholarGoogle Scholar | 30268031PubMed |

Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., and Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One 9, e97731.
Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production.Crossref | GoogleScholarGoogle Scholar | 24844283PubMed |

Sterzik, K., Rosenbusch, B., Grab, D., Wahl, A., Beier, H. M., and Lauritzen, C. (1992). Numerical chromosome anomalies after fertilization of freeze–thawed mouse oocytes. Arch. Gynecol. Obstet. 251, 133–138.
Numerical chromosome anomalies after fertilization of freeze–thawed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1605678PubMed |

Sung, L.-Y., Chang, C.-C., Amano, T., Lin, C.-J., Amano, M., Treaster, S. B., Xu, J., Chang, W.-F., Nagy, Z. P., Yang, X., and Tian, X. C. (2010). Efficient derivation of embryonic stem cells from nuclear transfer and parthenogenetic embryos derived from cryopreserved oocytes. Cell. Reprogram. 12, 203–211.
Efficient derivation of embryonic stem cells from nuclear transfer and parthenogenetic embryos derived from cryopreserved oocytes.Crossref | GoogleScholarGoogle Scholar | 20677934PubMed |

Szymańska, K. J., Ortiz-Escribano, N., Van den Abbeel, E., Van Soom, A., and Leybaert, L. (2018). Connexin hemichannels and cell death as measures of bovine COC vitrification success. Reproduction 123, 87–99.
Connexin hemichannels and cell death as measures of bovine COC vitrification success.Crossref | GoogleScholarGoogle Scholar |

Tanghe, S., Van Soom, A., Mehrzad, J., Maes, D., Duchateau, L., and de Kruif, A. (2003). Cumulus contributions during bovine fertilization in vitro. Theriogenology 60, 135–149.
Cumulus contributions during bovine fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 12620587PubMed |

Tharasanit, T., Colenbrander, B., and Stout, T. A. E. (2006a). Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes. Mol. Reprod. Dev. 73, 627–637.
Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 16477611PubMed |

Tharasanit, T., Colleoni, S., Lazzari, G., Colenbrander, B., Galli, C., and Stout, T. A. E. (2006b). Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reproduction 132, 759–769.
Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes.Crossref | GoogleScholarGoogle Scholar | 17071777PubMed |

Tharasanit, T., Colleoni, S., Galli, C., Colenbrander, B., and Stout, T. A. E. (2009). Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes. Reproduction 137, 391–401.
Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes.Crossref | GoogleScholarGoogle Scholar | 19073713PubMed |

Torner, H., and Alm, H. (2018). Meiotic configuration of horse oocytes in relation to the morphology of the cumulus–oocyte complex. Biol. Reprod. 52, 253–259.
Meiotic configuration of horse oocytes in relation to the morphology of the cumulus–oocyte complex.Crossref | GoogleScholarGoogle Scholar |

Tucker, M. J., Morton, P. C., Wright, G., Sweitzer, C. L., and Massey, J. B. (1998). Clinical application of human egg cryopreservation. Hum. Reprod. 13, 3156–3159.
Clinical application of human egg cryopreservation.Crossref | GoogleScholarGoogle Scholar | 9853874PubMed |

Urrego, R., Rodriguez-Osorio, N., and Niemann, H. (2014). Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 9, 803–815.
Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle.Crossref | GoogleScholarGoogle Scholar | 24709985PubMed |

Vajta, G. (2013). Vitrification in human and domestic animal embryology: work in progress. Reprod. Fertil. Dev. 25, 719–727.
Vitrification in human and domestic animal embryology: work in progress.Crossref | GoogleScholarGoogle Scholar | 22951206PubMed |

Vajta, G., and Kuwayama, M. (2006). Improving cryopreservation systems. Theriogenology 65, 236–244.
Improving cryopreservation systems.Crossref | GoogleScholarGoogle Scholar | 16289262PubMed |

Vajta, G., Rienzi, L., and Ubaldi, F. M. (2015). Open versus closed systems for vitrification of human oocytes and embryos. Reprod. Biomed. Online 30, 325–333.
Open versus closed systems for vitrification of human oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 25639657PubMed |

Vermeiden, J. P. W., and Bernardus, R. E. (2013). Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil. Steril. 99, 642–651.
Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection?Crossref | GoogleScholarGoogle Scholar |

Wang, L., Liu, J., Zhou, G., Hou, Y., Li, J., and Zhu, S. (2011). Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures. Biol. Reprod. 85, 884–894.
Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.Crossref | GoogleScholarGoogle Scholar | 21697515PubMed |

Woelders, H., Guignot, F., Ortiz-Escribano, N., van Soom, A., and Smits, K. (2018). Simulations of osmotic events in vitrification of equine oocytes and porcine embryos. Cryobiology 85, 154–155.
Simulations of osmotic events in vitrification of equine oocytes and porcine embryos.Crossref | GoogleScholarGoogle Scholar |

Wowk, B., Leitl, E., Rasch, C. M., Mesbah-Karimi, N., Harris, S. B., and Fahy, G. M. (2000). Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40, 228–236.
Vitrification enhancement by synthetic ice blocking agents.Crossref | GoogleScholarGoogle Scholar | 10860622PubMed |

Wu, J., Zhang, L., and Wang, X. (2001). In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes. Reproduction 121, 389–393.
In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes.Crossref | GoogleScholarGoogle Scholar | 11226064PubMed |

Yan, J., Zhang, L., Wang, T., Li, R., Liu, P., Yan, L., and Qiao, J. (2014). Effect of vitrification at the germinal vesicle stage on the global methylation status in mouse oocytes subsequently matured in vitro. Chin. Med. J. (Engl.) 127, 4019–4024.
Effect of vitrification at the germinal vesicle stage on the global methylation status in mouse oocytes subsequently matured in vitro.Crossref | GoogleScholarGoogle Scholar | 25430442PubMed |

Yashiro, I., Tagiri, M., Ogawa, H., Tashima, K., Takashima, S., Hara, H., Hirabayashi, M., and Hochi, S. (2015). High revivability of vitrified–warmed bovine mature oocytes after recovery culture with alpha-tocopherol. Reproduction 149, 347–355.
High revivability of vitrified–warmed bovine mature oocytes after recovery culture with alpha-tocopherol.Crossref | GoogleScholarGoogle Scholar | 25628440PubMed |

Yu, X.-L., Xu, Y.-K., Wu, H., Guo, X.-F., Li, X.-X., Han, W.-X., and Li, Y.-H. (2016). Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid. Theriogenology 85, 1090–1096.
Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.Crossref | GoogleScholarGoogle Scholar | 26707386PubMed |

Zhang, Z., Wang, T., Hao, Y., Panhwar, F., Chen, Z., Zou, W., Ji, D., Chen, B., Zhou, P., Zhao, G., and Cao, Y. (2017). Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes. Cryobiology 74, 43–49.
Effects of trehalose vitrification and artificial oocyte activation on the development competence of human immature oocytes.Crossref | GoogleScholarGoogle Scholar | 27956222PubMed |

Zhou, X. L., Al Naib, A., Sun, D.-W., and Lonergan, P. (2010). Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development. Cryobiology 61, 66–72.
Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development.Crossref | GoogleScholarGoogle Scholar | 20510225PubMed |