Evidence that glycosaminoglycan storage and collagen deposition in the cauda epididymidis does not impair sperm viability in the Mucopolysaccharidosis type I mouse model
Cinthia Castro do Nascimento A , Odair Aguiar B , Gustavo Monteiro Viana C and Vânia D’Almeida A DA Department of Psychobiology, Universidade Federal de São Paulo, 04024-002, Brazil.
B Department of Biosciences, Universidade Federal de São Paulo, 11015-020, Brazil.
C Department of Biochemistry, Universidade Federal de São Paulo, 04044-020, Brazil.
D Corresponding author. Email: vaniadalmeida@icloud.com
Reproduction, Fertility and Development 32(3) 304-312 https://doi.org/10.1071/RD19144
Submitted: 12 November 2018 Accepted: 18 June 2019 Published: 4 November 2019
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a deficiency of the lysosomal hydrolase, α-L-iduronidase (IDUA). IDUA degrades heparan and dermatan sulfates, two types of glycosaminoglycan (GAG), important signalling and structural molecules of the extracellular matrix. Because many cell types store GAGs, MPS I has been investigated in human and animal models. Enzyme replacement therapy is available for MPS I patients and has improved their life expectancy, allowing them to achieve reproductive age. The aim of this study was to evaluate epididymal and sperm morphology and function in a murine model of MPS I. We used C57BL Idua+/+ and Idua−/− adult male mice (6 months old) to investigate epididymal morphology, sperm ultrastructure, GAG characterisation and mating competence. Epithelial GAG storage, especially in the cauda epididymidis, was seen in Idua−/− mice. Regardless of the morphologic change and GAG storage found in the cauda epididymis, sperm morphology and motility were normal, similar to wild types. In the interstitium, vacuolated cells were found in addition to deposits of GAGs. Mating was not impaired in Idua−/− males and litter sizes were similar between groups. At the time point of the disease evaluated, the deficiency in IDUA affected the morphology of the epididymis in male Idua−/− mice, whereas sperm appearance and motility and the male’s capacity to mate and impregnate females were preserved.
Additional keywords: epididymis, mice, spermatozoa.
References
Adam, M., Urbanski, H. F., Garyfallou, V. T., Welsch, U., Köhn, F. M., Ullrich Schwarzer, J., Strauss, L., Poutanen, M., and Mayerhofer, A. (2012). High levels of the extracellular matrix proteoglycan decorin are associated with inhibition of testicular function. Int. J. Androl. 35, 550–561.| High levels of the extracellular matrix proteoglycan decorin are associated with inhibition of testicular function.Crossref | GoogleScholarGoogle Scholar | 22413766PubMed |
Adamali, H. I., Somani, I. H., Huang, J. Q., Gravel, R. A., Trasler, J. M., and Hermo, L. (1999). II. Characterization and development of the regional and cellular specific abnormalities in the epididymis of mice with hexosaminidase A deficiency. J. Androl. 20, 803–824.
| 10591619PubMed |
Baldo, G., Mayer, F. Q., Martinelli, B., Dilda, A., Meyer, F., Ponder, K. P., Giugliani, R., and Matte, U. (2012). Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice. Behav. Brain Res. 233, 169–175.
| Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice.Crossref | GoogleScholarGoogle Scholar | 22580166PubMed |
Belmonte, S. A., and Romano, P. (2002). Compartmentalization of lysosomal enzymes in cauda epididymis of normal and castrated rats. Arch. Androl. 48, 193–201.
| Compartmentalization of lysosomal enzymes in cauda epididymis of normal and castrated rats.Crossref | GoogleScholarGoogle Scholar | 11964212PubMed |
Belmonte, S. A., Challa, A., Gutierrez, L. S., Bertini, F., and Sosa, M. A. (1998). Alpha Mannosidase from rat epididymal fluid is a ligand for phosphomannosyl receptors on the sperm surface. Int. J. Androl. 21, 277–282.
| 9805243PubMed |
Boussouar, F., and Benahmed, M. (2004). Lactate and energy metabolism in male germ cells. Trends Endocrinol. Metab. 15, 345–350.
| Lactate and energy metabolism in male germ cells.Crossref | GoogleScholarGoogle Scholar | 15350607PubMed |
Butler, A., He, X., Gordon, R. E., Wu, H., Gatt, S., and Schuchman, E. H. (2002). Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am. J. Pathol. 161, 1061–1075.
| Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice.Crossref | GoogleScholarGoogle Scholar | 12213735PubMed |
Caesar, R., Manieri, M., Kelder, T., Boekschoten, M., Evelo, C., Müller, M., Kooistra, T., Cinti, S., Kleemann, R., and Drevon, C. A. (2010). A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS One 5, e11525.
| A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences.Crossref | GoogleScholarGoogle Scholar | 20634946PubMed |
Campos, D., and Monaga, M. (2012). Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms. Metab. Brain Dis. 27, 121–129.
| Mucopolysaccharidosis type I: current knowledge on its pathophysiological mechanisms.Crossref | GoogleScholarGoogle Scholar | 22527994PubMed |
Castorina, M., Antuzzi, D., Richards, S. M., Cox, G. F., and Xue, Y. (2015). Successful pregnancy and breastfeeding in a woman with mucopolysaccharidosis type I while receiving laronidase enzyme replacement therapy. Clin. Exp. Obstet. Gynecol. 42, 108–113.
| 25864295PubMed |
Chu, Y., Huddleston, G. G., Clancy, A. N., Harris, R. B. S., and Bartness, T. J. (2010). Epididymal fat is necessary for spermatogenesis, but not testosterone production or copulatory behavior. Endocrinology 151, 5669–5679.
| Epididymal fat is necessary for spermatogenesis, but not testosterone production or copulatory behavior.Crossref | GoogleScholarGoogle Scholar | 20881242PubMed |
Clarke, L. A. (2008). The mucopolysaccharidoses: a success of molecular medicine. Expert Rev. Mol. Med. 10, e1.
| The mucopolysaccharidoses: a success of molecular medicine.Crossref | GoogleScholarGoogle Scholar | 18201392PubMed |
Clarke, L. A., Russell, C. S., Pownall, S., Warrington, C. L., Borowski, A., Dimmick, J. E., Toone, J., and Jirik, F. R. (1997). Murine mucopolysaccharidosis type I: targeted disruption of the murine α-L-iduronidase gene. Hum. Mol. Genet. 6, 503–511.
| Murine mucopolysaccharidosis type I: targeted disruption of the murine α-L-iduronidase gene.Crossref | GoogleScholarGoogle Scholar | 9097952PubMed |
De Grava Kempinas, W., and Klinefelter, G. R. (2014). Interpreting histopathology in the epididymis. Spermatogenesis 4, e979114.
| Interpreting histopathology in the epididymis.Crossref | GoogleScholarGoogle Scholar | 26413396PubMed |
Dietrich, C. P., and Nader, H. B. (1974). Fractionation and properties of four heparitin sulfates from beef lung tissue. Isolation and partial characterization of a homogeneous species of heparitin sulfate. Biochim. Biophys. Acta 343, 34–44.
| Fractionation and properties of four heparitin sulfates from beef lung tissue. Isolation and partial characterization of a homogeneous species of heparitin sulfate.Crossref | GoogleScholarGoogle Scholar | 4275210PubMed |
Dietrich, C. P., McDuffie, N. M., and Sampaio, L. O. (1977). Identification of acidic mucopolysaccharides by agarose gel electrophoresis. J. Chromatogr. 130, 299–304.
| Identification of acidic mucopolysaccharides by agarose gel electrophoresis.Crossref | GoogleScholarGoogle Scholar | 140178PubMed |
do Nascimento, C. C., Junior, O. A., and D’Almeida, V. (2014). Analysis of male reproductive parameters in a murine model of mucopolysaccharidosis type I (MPS I). Int. J. Clin. Exp. Pathol. 7, 3488–3497.
| 25031781PubMed |
Fan, J., Akabane, H., Graham, S. N., Richardson, L. L., and Zhu, G.-Z. (2006). Sperm defects in mice lacking a functional Niemann–Pick C1 protein. Mol. Reprod. Dev. 73, 1284–1291.
| Sperm defects in mice lacking a functional Niemann–Pick C1 protein.Crossref | GoogleScholarGoogle Scholar | 16850391PubMed |
Garcia, P. V., Arrotéia, K. F., Joazeiro, P. P., de Fátima Paccola Mesquita, S., de Grava Kempinas, W., and Pereira, L. A. V. (2011). Orchidopexy restores morphometric–stereologic changes in the caput epididymis and daily sperm production in cryptorchidic mice, although sperm transit time and fertility parameters remain impaired. Fertil. Steril. 96, 739–744.
| Orchidopexy restores morphometric–stereologic changes in the caput epididymis and daily sperm production in cryptorchidic mice, although sperm transit time and fertility parameters remain impaired.Crossref | GoogleScholarGoogle Scholar | 21762892PubMed |
Hendriksz, C. J., Moss, G. M., and Wraith, J. E. (2004). Pregnancy in a patient with mucopolysaccharidosis type IH homozygous for the W402X mutation. J. Inherit. Metab. Dis. 27, 685–686.
| Pregnancy in a patient with mucopolysaccharidosis type IH homozygous for the W402X mutation.Crossref | GoogleScholarGoogle Scholar | 15669685PubMed |
Heppner, J. M., Zaucke, F., and Clarke, L. A. (2015). Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol. Genet. Metab. 114, 146–155.
| Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I.Crossref | GoogleScholarGoogle Scholar | 25410057PubMed |
Hermo, L., Oko, R., and Carlos, R. (1994). Secretion and endocytosis in the male reproductive tract: a role in sperm maturation. Int. Rev. Cytol. 154, 105–189.
| Secretion and endocytosis in the male reproductive tract: a role in sperm maturation.Crossref | GoogleScholarGoogle Scholar |
Hinton, B. T., and Palladino, M. A. (1995). Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment. Microsc. Res. Tech. 30, 67–81.
| Epididymal epithelium: its contribution to the formation of a luminal fluid microenvironment.Crossref | GoogleScholarGoogle Scholar | 7711321PubMed |
Iozzo, R. V., and Schaefer, L. (2010). Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 277, 3864–3875.
| Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans.Crossref | GoogleScholarGoogle Scholar | 20840584PubMed |
Kakkis, E. D. (2001). Enzyme-replacement therapy in mucopolysaccharidosis I. N. Engl. J. Med. 344, 182–188.
| Enzyme-replacement therapy in mucopolysaccharidosis I.Crossref | GoogleScholarGoogle Scholar | 11172140PubMed |
Keber, R., Rozman, D., and Horvat, S. (2013). Sterols in spermatogenesis and sperm maturation. J. Lipid Res. 54, 20–33.
| Sterols in spermatogenesis and sperm maturation.Crossref | GoogleScholarGoogle Scholar | 23093550PubMed |
Kim, C., Kwak, M. J., Cho, S. Y., Ko, A., Rheey, J., and Kwon, J. (2015). Decreased performance in IDUA knockout mouse mimic limitations of joint function and locomotion in patients with Hurler syndrome. Orphanet J. Rare Dis. 10, 121.
| Decreased performance in IDUA knockout mouse mimic limitations of joint function and locomotion in patients with Hurler syndrome.Crossref | GoogleScholarGoogle Scholar | 26407983PubMed |
Latendresse, J. R., Warbrittion, A. R., Jonassen, H., and Creasy, D. M. (2002). Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol. Pathol. 30, 524–533.
| Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid.Crossref | GoogleScholarGoogle Scholar | 12187944PubMed |
Luddi, A., Strazza, M., Carbone, M., Moretti, E., and Costantino-ceccarini, E. (2005). Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy. Exp. Cell Res. 304, 59–68.
| Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy.Crossref | GoogleScholarGoogle Scholar | 15707574PubMed |
Mayorga, L. S., and Bertini, F. (1981). Acid hydrolases in the epididymis of normal, castrated, vasectomized, cryptorchid and cryptepididymal rats. Int. J. Androl. 4, 208–219.
| Acid hydrolases in the epididymis of normal, castrated, vasectomized, cryptorchid and cryptepididymal rats.Crossref | GoogleScholarGoogle Scholar | 6114043PubMed |
Milazzo, J.-P., Bironneau, A., Vannier, J.-P., Liard-Zmuda, A., Macé, B., and Nathalie, R. (2014). Precocious initiation of spermatogenesis in a 19-month-old boy with Hurler syndrome. Basic Clin. Androl. 24, 8.
| Precocious initiation of spermatogenesis in a 19-month-old boy with Hurler syndrome.Crossref | GoogleScholarGoogle Scholar | 25780582PubMed |
Miller, D. J., Gong, X., and Shur, B. D. (1993). Sperm require beta-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development 118, 1279–1289.
| 8269854PubMed |
Muenzer, J., Wraith, J. E., and Clarke, L. A. (2009). Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics 123, 19–29.
| Mucopolysaccharidosis I: management and treatment guidelines.Crossref | GoogleScholarGoogle Scholar | 19117856PubMed |
Neufeld, E. F., and Muenzer, J. (2001). The mucopolysaccharidoses. In ‘Metabolic and Molecular Basis of Inherited Disease’. (Eds C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle.) pp. 3421–3452. (McGraw-Hill: New York.)
Ohmi, K., Greenberg, D. S., Rajavel, K. S., Ryazantsev, S., Li, H. H., and Neufeld, E. F. (2003). Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc. Natl Acad. Sci. USA 100, 1902–1907.
| Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB.Crossref | GoogleScholarGoogle Scholar | 12576554PubMed |
Pasqualim, G., Baldo, G., de Carvalho, T. G., Tavares, A. M., Giugliani, R., and Matte, U. (2015). Effects of enzyme replacement therapy started late in a murine model of mucopolysaccharidosis type I. PLoS One 10, e0117271.
| Effects of enzyme replacement therapy started late in a murine model of mucopolysaccharidosis type I.Crossref | GoogleScholarGoogle Scholar | 25646802PubMed |
Pereira, V. G., Gazarini, M. L., Rodrigues, L. C., da Silva, F. H., Han, S. W., Martins, A. M., Tersariol, I. L., and D’Almeida, V. (2010). Evidence of lysosomal membrane permeabilization in mucopolysaccharidosis type i: rupture of calcium and proton homeostasis. J. Cell. Physiol. 223, 335–342.
| 20082302PubMed |
Pereira, V. G., Queiroz, M. T., and D’Almeida, V. (2016). Differential expression of microRNAs from miR-17 family in the cerebellum of mucopolysaccharidosis type I mice. Gene 595, 207–211.
| Differential expression of microRNAs from miR-17 family in the cerebellum of mucopolysaccharidosis type I mice.Crossref | GoogleScholarGoogle Scholar | 27720939PubMed |
Perobelli, J. E., Martinez, M. F., da Silva Franchi, C. A., Fernandez, C. D., de Camargo, J. L., and de Grava Kempinas, W. (2010). Current issues decreased sperm motility in rats orally exposed to single or mixed pesticides. J. Toxicol. Environ. Health 73, 991–1002.
| Current issues decreased sperm motility in rats orally exposed to single or mixed pesticides.Crossref | GoogleScholarGoogle Scholar |
Remérand, G., Merlin, E., Froissart, R., Brugnon, F., Kanold, J., Janny, L., and Deméocq, F. (2009). Four successful pregnancies in a patient with mucopolysaccharidosis type I treated by allogeneic bone marrow transplantation. J. Inherit. Metab. Dis. 32, S111–S113.
| Four successful pregnancies in a patient with mucopolysaccharidosis type I treated by allogeneic bone marrow transplantation.Crossref | GoogleScholarGoogle Scholar | 19280364PubMed |
Robaire, B., Hinton, B. T., and Orgebin-Crist, M. C. (2006). The epididymis. In ‘Knobil and Neill’s Physiology of Reproduction’. (Ed. J. D. Neill.) pp. 1071–1148. (Elsevier: New York.)
Sampaio, L. O., and Dietrich, C. P. (1981). Changes of sulfated mucopolysaccharides and mucopolysaccharidases during fetal development. J. Biol. Chem. 256, 9205–9210.
| 6455438PubMed |
Schuh, R. S., Poletto, E., Pasqualim, G., Tavares, A. M. V., Meyer, F. S., Gonzalez, E. A., Giugliani, R., Matte, U., Teixeira, H. F., and Baldo, G. (2018). In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J. Control. Release 288, 23–33.
| In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 30170069PubMed |
Selva, D. M., Hirsch-Reinshagen, V., Burgess, B., Zhou, S., Chan, J., McIsaac, S., Hayden, M. R., Hammond, G. L., Vogl, A. W., and Wellington, C. L. (2004). The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. J. Lipid Res. 45, 1040–1050.
| The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility.Crossref | GoogleScholarGoogle Scholar | 15026428PubMed |
Staropoli, J. F., Haliw, L., Biswas, S., Garrett, L., Hölter, S. M., Becker, L., Skosyrski, S., Da Silva-Buttkus, P., Calzada-Wack, J., Neff, F., et al. (2012). Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system. PLoS One 7, e38310.
| Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system.Crossref | GoogleScholarGoogle Scholar | 22701626PubMed |
Trasler, J., Saberi, F., Somani, I. H., Adamali, H. I., Huang, J. Q., Fortunato, S. R., Ritter, G., Gu, M., Aebersold, R., Gravel, R. A., and Hermo, L. (1998). Characterization of the testis and epididymis in mouse models of human Tay Sachs and Sandhoff diseases and partial determination of accumulated gangliosides. Endocrinology 139, 3280–3288.
| Characterization of the testis and epididymis in mouse models of human Tay Sachs and Sandhoff diseases and partial determination of accumulated gangliosides.Crossref | GoogleScholarGoogle Scholar | 9645704PubMed |
Tylki-Szymanska, A., and Metera, M. (1995). Precocious puberty in three boys with Sanfilippo A (Mucopolysaccharidosis IIIA). J. Pediatr. Endocrinol. Metab. 8, 291–293.
| Precocious puberty in three boys with Sanfilippo A (Mucopolysaccharidosis IIIA).Crossref | GoogleScholarGoogle Scholar | 8821908PubMed |
Viana, G. M., Vin, M., Buri, I., Paredes-gamero, E. J., Martins, A. M., and D’Almeida, V. (2016). Impaired hematopoiesis and disrupted monocyte/macrophage homeostasis in Mucopolysaccharidosis type I mice. J. Cell. Physiol. 231, 698–707.
| Impaired hematopoiesis and disrupted monocyte/macrophage homeostasis in Mucopolysaccharidosis type I mice.Crossref | GoogleScholarGoogle Scholar | 26235607PubMed |
Viana, G. M., do Nascimento, C. C., Paredes-Gamero, E. J., and D’Almeida, V. (2017). Altered cellular homeostasis in murine MPS I fibroblasts: evidence of cell-specific physiopathology. JIMD Rep. 36, 109–116.
| Altered cellular homeostasis in murine MPS I fibroblasts: evidence of cell-specific physiopathology.Crossref | GoogleScholarGoogle Scholar | 28220405PubMed |
Walkley, S. U. (2004). Secondary accumulation of gangliosides in lysosomal storage disorders. Semin. Cell Dev. Biol. 15, 433–444.
| Secondary accumulation of gangliosides in lysosomal storage disorders.Crossref | GoogleScholarGoogle Scholar | 15207833PubMed |
Wang, D., Shukla, C., Liu, X., Schoeb, T. R., Clarke, L. A., Bedwell, D. M., and Keeling, K. M. (2010). Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol. Genet. Metab. 99, 62–71.
| Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation.Crossref | GoogleScholarGoogle Scholar | 19751987PubMed |
Xu, H., Kongmanas, K., Kadunganattil, S., Smith, C. E., Rupar, T., Goto-Inoue, N., Hermo, L., Faull, K. F., and Tanphaichitr, N. (2011). Arylsulfatase A deficiency causes seminolipid accumulation and a lysosomal storage disorder in Sertoli cells. J. Lipid Res. 52, 2187–2197.
| Arylsulfatase A deficiency causes seminolipid accumulation and a lysosomal storage disorder in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 21965315PubMed |
Yildiz, Y., Matern, H., Thompson, B., Allegood, J. C., Warren, R. L., Ramirez, D. M., Hammer, R. E., Hamra, F. K., Matern, S., and Russell, D. W. (2006). Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J. Clin. Invest. 116, 2985–2994.
| Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility.Crossref | GoogleScholarGoogle Scholar | 17080196PubMed |