Human Caesarean scar-derived feeder cells: a novel feeder cell type for culturing human pluripotent stem cells without exogenous basic fibroblast growth factor supplementation
Wipawee Pavarajarn A B , Ruttachuk Rungsiwiwut C , Pranee Numchaisrika B , Pramuan Virutamasen B and Kamthorn Pruksananonda B DA Graduate School, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4, Bangkok 10330, Thailand.
B Human Embryonic Stem Cell Research Center, Reproductive Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4, Bangkok 10330, Thailand.
C Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
D Corresponding author. Email: pkamthorn@yahoo.com
Reproduction, Fertility and Development 32(9) 822-834 https://doi.org/10.1071/RD19128
Submitted: 4 April 2019 Accepted: 10 December 2019 Published: 22 May 2020
Abstract
In a feeder-dependent culture system of human pluripotent stem cells (hPSCs), coculture with mouse embryonic fibroblasts may limit the clinical use of hPSCs. The aim of this study was to determine the feasibility of using human Caesarean scar fibroblasts (HSFs) as feeder cells for the culture of hPSCs. HSFs were isolated and characterised and cocultured with hPSCs, and the pluripotency, differentiation ability and karyotypic stability of hPSCs were determined. Inactivated HSFs expressed genes (including inhibin subunit beta A (INHBA), bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), transforming growth factor-β1 (TGFB1), collagen alpha-1(I) (COL1A1) and fibronectin-1 (FN1) that have been implicated in the maintenance of hPSC pluripotency. When HSFs were used as feeder cells, the pluripotency and karyotypic stability of hPSC lines did not change after prolonged coculture. Interestingly, exogenous FGF2 could be omitted from the culture medium when HSFs were used as feeder cells for hESCs but not hiPSCs. hESCs cocultured with HSF feeder cells in medium without FGF2 supplementation maintained their pluripotency (as confirmed by the expression of pluripotency markers and genes), differentiated in vitro into embryonic germ layers and maintained their normal karyotype. The present study demonstrates that HSFs are a novel feeder cell type for culturing hPSCs and that supplementation of exogenous FGF2 is not necessary for the Chula2.hES line.
Additional keywords: differentiation, embryoid body, pluripotency, reprogramming, stem cells.
References
Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., Itskovitz-Eldor, J., and Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278.| Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture.Crossref | GoogleScholarGoogle Scholar | 11071754PubMed |
Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845.
| Feeder layer- and serum-free culture of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 14627547PubMed |
Ashcroft, K. J., Syed, F., and Bayat, A. (2013). Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling. PLoS One 8, e75600.
| Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling.Crossref | GoogleScholarGoogle Scholar | 24348987PubMed |
Catalina, P., Montes, R., Ligero, G., Sanchez, L., de la Cueva, T., Bueno, C., Leone, P. E., and Menendez, P. (2008). Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol. Cancer 7, 76.
| Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties?Crossref | GoogleScholarGoogle Scholar | 18834512PubMed |
Cheng, L., Hammond, H., Ye, Z., Zhan, X., and Dravid, G. (2003). Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21, 131–142.
| Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture.Crossref | GoogleScholarGoogle Scholar | 12634409PubMed |
Ding, D. C., Shyu, W. C., Lin, S. Z., Liu, H. W., Chiou, S. H., and Chu, T. Y. (2012). Human umbilical cord mesenchymal stem cells support nontumorigenic expansion of human embryonic stem cells. Cell Transplant. 21, 1515–1527.
| Human umbilical cord mesenchymal stem cells support nontumorigenic expansion of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 22732188PubMed |
Draper, J. S., Smith, K., Gokhale, P., Moore, H. D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T. P., Thomson, J. A., and Andrews, P. W. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54.
| Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 14661028PubMed |
Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A., and Dvorak, P. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52, 353–363.
| Comparative study of mouse and human feeder cells for human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 18415935PubMed |
Ellerström, C., Strehl, R., Noaksson, K., Hyllner, J., and Semb, H. (2007). Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25, 1690–1696.
| Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation.Crossref | GoogleScholarGoogle Scholar | 17379766PubMed |
Garitaonandia, I., Amir, H., Boscolo, F. S., Wambua, G. K., Schultheisz, H. L., Sabatini, K., Morey, R., Waltz, S., Wang, Y. C., Tran, H., Leonardo, T. R., Nazor, K., Slavin, I., Lynch, C., Li, Y., Coleman, R., Gallego Romero, I., Altun, G., Reynolds, D., Dalton, S., Parast, M., Loring, J. F., and Laurent, L. C. (2015). Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 10, e0118307.
| Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions.Crossref | GoogleScholarGoogle Scholar | 25714340PubMed |
Greber, B., Lehrach, H., and Adjaye, J. (2007). Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25, 455–464.
| Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal.Crossref | GoogleScholarGoogle Scholar | 17038665PubMed |
Haghighi, F., Dahlmann, J., Nakhaei-Rad, S., Lang, A., Kutschka, I., Zenker, M., Kensah, G., Piekorz, R. P., and Ahmadian, M. R. (2018). bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun. Signal. 16, 96.
| bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling.Crossref | GoogleScholarGoogle Scholar | 30518391PubMed |
Heng, B. C., Vinoth, K. J., Liu, H., Hande, M. P., and Cao, T. (2006). Low temperature tolerance of human embryonic stem cells. Int. J. Med. Sci. 3, 124–129.
| Low temperature tolerance of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 16906221PubMed |
Hovatta, O., Mikkola, M., Gertow, K., Stromberg, A. M., Inzunza, J., Hreinsson, J., Rozell, B., Blennow, E., Andang, M., and Ahrlund-Richter, L. (2003). A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409.
| A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 12832363PubMed |
Imsoonthornruksa, S., Pruksananonda, K., Parnpai, R., Rungsiwiwut, R., and Ketudat-Cairns, M. (2015). Expression and purification of recombinant human basic fibroblast growth factor fusion proteins and their uses in human stem cell culture. J. Mol. Microbiol. Biotechnol. 25, 372–380.
| Expression and purification of recombinant human basic fibroblast growth factor fusion proteins and their uses in human stem cell culture.Crossref | GoogleScholarGoogle Scholar | 26584430PubMed |
James, D., Levine, A. J., Besser, D., and Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282.
| TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 15703277PubMed |
Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., and Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485.
| Human embryonic stem cell lines derived from single blastomeres.Crossref | GoogleScholarGoogle Scholar | 16929302PubMed |
Kueh, J., Richards, M., Ng, S. W., Chan, W. K., and Bongso, A. (2006). The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression. Fertil. Steril. 85, 1843–1846.
| The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression.Crossref | GoogleScholarGoogle Scholar | 16674954PubMed |
Lee, E. J., Kang, H. J., Lee, H. N., Kang, S. K., Kim, K. H., Lee, S. W., Lee, G., Park, Y. B., and Kim, H. S. (2012). New culture system for human embryonic stem cells: autologous mesenchymal stem cell feeder without exogenous fibroblast growth factor 2. Differentiation 83, 92–100.
| New culture system for human embryonic stem cells: autologous mesenchymal stem cell feeder without exogenous fibroblast growth factor 2.Crossref | GoogleScholarGoogle Scholar | 22099180PubMed |
Levenstein, M. E., Ludwig, T. E., Xu, R. H., Llanas, R. A., VanDenHeuvel-Kramer, K., Manning, D., and Thomson, J. A. (2006). Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24, 568–574.
| Basic fibroblast growth factor support of human embryonic stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 16282444PubMed |
Liu, C. X., Zhang, R. L., Gao, J., Li, T., Ren, Z., Zhou, C. Q., and Wen, A. M. (2014). Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol. Reprod. Dev. 81, 470–479.
| Derivation of human embryonic stem cell lines without any exogenous growth factors.Crossref | GoogleScholarGoogle Scholar | 24554631PubMed |
Ma, X., Li, H., Xin, S., Ma, Y., and Ouyang, T. (2014). Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner. Int. J. Clin. Exp. Pathol. 7, 4661–4673.
| 25197338PubMed |
Mamidi, M. K., Pal, R., Mori, N. A., Arumugam, G., Thrichelvam, S. T., Noor, P. J., Abdullah, H. M., Gupta, P. K., Das, A. K., Zakaria, Z., and Bhonde, R. (2011). Co-culture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells. J. Cell. Biochem. 112, 1353–1363.
| Co-culture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 21337383PubMed |
Martin, M. J., Muotri, A., Gage, F., and Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232.
| Human embryonic stem cells express an immunogenic nonhuman sialic acid.Crossref | GoogleScholarGoogle Scholar | 15685172PubMed |
McGowan-Jordan, J., Simons, A., Schmid, M. (2016). ‘An international system for human cytogenomic nomenclature.’ (Karker: Basel, Switzerland.)
Park, Y., Choi, I. Y., Lee, S. J., Lee, S. R., Sung, H. J., Kim, J. H., Yoo, Y. D., Geum, D. H., Kim, S. H., and Kim, B. S. (2010). Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev. 19, 1713–1722.
| Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation.Crossref | GoogleScholarGoogle Scholar | 20201681PubMed |
Park, Y., Kim, J. H., Lee, S. J., Choi, I. Y., Park, S. J., Lee, S. R., Sung, H. J., Yoo, Y. D., Geum, D. H., Choi, C. W., Kim, S. H., and Kim, B. S. (2011). Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells Dev. 20, 1901–1910.
| Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors.Crossref | GoogleScholarGoogle Scholar | 21231869PubMed |
Pruksananonda, K., Rungsiwiwut, R., Numchaisrika, P., Ahnonkitpanich, V., and Virutamasen, P. (2009). Development of human embryonic stem cell derivation. J. Med. Assoc. Thai. 92, 443–450.
| 19374291PubMed |
Pruksananonda, K., Rungsiwiwut, R., Numchaisrika, P., Ahnonkitpanit, V., Isarasena, N., and Virutamasen, P. (2012). Eighteen-year cryopreservation does not negatively affect the pluripotency of human embryos: evidence from embryonic stem cell derivation. Biores. Open Access 1, 166–173.
| Eighteen-year cryopreservation does not negatively affect the pluripotency of human embryos: evidence from embryonic stem cell derivation.Crossref | GoogleScholarGoogle Scholar | 23514952PubMed |
Quang, T., Marquez, M., Blanco, G., and Zhao, Y. (2014). Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PLoS One 9, e86031.
| Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 24465853PubMed |
Richards, M., Tan, S., Fong, C. Y., Biswas, A., Chan, W. K., and Bongso, A. (2003). Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21, 546–556.
| Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 12968109PubMed |
Rosler, E. S., Fisk, G. J., Ares, X., Irving, J., Miura, T., Rao, M. S., and Carpenter, M. K. (2004). Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259–274.
| Long-term culture of human embryonic stem cells in feeder-free conditions.Crossref | GoogleScholarGoogle Scholar | 14745951PubMed |
Schinköthe, T., Bloch, W., and Schmidt, A. (2008). In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 17, 199–206.
| In vitro secreting profile of human mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 18208373PubMed |
Shi, H. X., Lin, C., Lin, B. B., Wang, Z. G., Zhang, H. Y., Wu, F. Z., Cheng, Y., Xiang, L. J., Guo, D. J., Luo, X., Zhang, G. Y., Fu, X. B., Bellusci, S., Li, X. K., and Xiao, J. (2013). The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS One 8, e59966.
| The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 23565178PubMed |
Shi, Y., Inoue, H., Wu, J. C., and Yamanaka, S. (2017). Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130.
| Induced pluripotent stem cell technology: a decade of progress.Crossref | GoogleScholarGoogle Scholar | 27980341PubMed |
Soteriou, D., Iskender, B., Byron, A., Humphries, J. D., Borg-Bartolo, S., Haddock, M. C., Baxter, M. A., Knight, D., Humphries, M. J., and Kimber, S. J. (2013). Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J. Biol. Chem. 288, 18716–18731.
| Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance.Crossref | GoogleScholarGoogle Scholar | 23658023PubMed |
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.
| Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Crossref | GoogleScholarGoogle Scholar | 18035408PubMed |
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
| Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 9804556PubMed |
Verfaillie, C. (2009). Pluripotent stem cells. Transfus. Clin. Biol. 16, 65–69.
| Pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 19442552PubMed |
Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., and Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974.
| Feeder-free growth of undifferentiated human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 11581665PubMed |
Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., and Thomson, J. A. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
| Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells.Crossref | GoogleScholarGoogle Scholar | 15782187PubMed |
Yamamoto, Y., Miyazaki, S., Maruyama, K., Kobayashi, R., Le, M. N. T., Kano, A., Kondow, A., Fujii, S., and Ohnuma, K. (2018). Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm. PLoS One 13, e0201960.
| Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm.Crossref | GoogleScholarGoogle Scholar | 30596665PubMed |
Yang, J. H., Shim, S. W., Lee, B. Y., and Lee, H. T. (2010). Skin-derived stem cells in human scar tissues: a novel isolation and proliferation technique and their differentiation potential to neurogenic progenitor cells. Tissue Eng. Part C Methods 16, 619–629.
| Skin-derived stem cells in human scar tissues: a novel isolation and proliferation technique and their differentiation potential to neurogenic progenitor cells.Crossref | GoogleScholarGoogle Scholar | 19764887PubMed |