Long non-coding RNA LOC105611671 modulates fibroblast growth factor 9 (FGF9) expression by targeting oar-miR-26a to promote testosterone biosynthesis in Hu sheep
Xiaoxiao Gao A , Ming Zhu A , Shiyu An A , Yaxu Liang A , Hua Yang A , Jing Pang A , Zifei Liu A , Guomin Zhang A and Feng Wang A BA Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.
B Corresponding author. Email: caeet@njau.edu.cn
Reproduction, Fertility and Development 32(4) 373-382 https://doi.org/10.1071/RD19116
Submitted: 28 March 2019 Accepted: 15 July 2019 Published: 21 November 2019
Abstract
Fibroblast growth factors (FGFs) play crucial roles in early gonadal development and germ cell maturation of mammals; FGF9 is involved in mammalian testis steroidogenesis. However, the upstream regulators of FGF9 in ovine testosterone biosynthesis remain unknown. Long non-coding RNAs (lncRNAs) are crucial regulators of multiple biological functions that act by altering gene expression. In the present study, we analysed the role of LOC105611671, a lncRNA upstream of FGF9, in Hu sheep steroidogenesis. We found that LOC105611671 expression increased significantly in Hu sheep testes during sexual maturation (P < 0.05). Moreover, levels of FGF9 and testosterone were decreased by LOC105611671 knockdown in Hu sheep Leydig cells (LCs). Results of transient transfection and luciferase assays revealed that FGF9 is a functional target gene of oar-miR-26a in ovine LCs. Further functional validation experiments revealed that LOC105611671 regulates testosterone biosynthesis by targeting oar-miR-26a. Overall, the present study describes the expression profile of LOC105611671 during sexual maturation and demonstrates that LOC105611671 modulates FGF9 expression by targeting oar-miR-26a to promote testis steroidogenesis in Hu sheep. Our research provides a new theoretical basis for genetic and molecular research on testosterone biosynthesis in sheep.
Additional keywords: lncRNA, microRNA, steroidogenesis, Leydig cells.
References
Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369.| A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.Crossref | GoogleScholarGoogle Scholar | 22000014PubMed |
Chaves, R. N., de Matos, M. H., Buratini, J., and de Figueiredo, J. R. (2012). The fibroblast growth factor family: involvement in the regulation of folliculogenesis. Reprod. Fertil. Dev. 24, 905–915.
| The fibroblast growth factor family: involvement in the regulation of folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 22935151PubMed |
Chen, T. M., Kuo, P. L., Hsu, C. H., Tsai, S. J., Chen, M. J., Lin, C. W., and Sun, H. S. (2007). Microsatellite in the 3′ untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression. Hum. Mutat. 28, 98.
| Microsatellite in the 3′ untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression.Crossref | GoogleScholarGoogle Scholar | 17154280PubMed |
Chuang, J. I., Huang, J. Y., Tsai, S. J., Sun, H. S., Yang, S. H., Chuang, P. C., Huang, B. M., and Ching, C. H. (2015). FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic. Biol. Med. 89, 274–286.
| FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation.Crossref | GoogleScholarGoogle Scholar | 26424114PubMed |
Chung, C. L., Lu, C. W., Cheng, Y. S., Lin, C. Y., Sun, H. S., and Lin, Y. M. (2013). Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome. Fertil. Steril. 100, 1547–1554.e4.
| Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome.Crossref | GoogleScholarGoogle Scholar | 24011613PubMed |
Cohen, R. I., and Chandross, K. J. (2000). Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes. J. Neurosci. Res. 61, 273–287.
| Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes.Crossref | GoogleScholarGoogle Scholar | 10900074PubMed |
Deng, M., Tang, H. L., Lu, X. H., Liu, M. Y., Lu, X. M., Gu, Y. X., Liu, J. F., and He, Z. M. (2013). miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One 8, e72662.
| miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer.Crossref | GoogleScholarGoogle Scholar | 24391795PubMed |
Drummond, A. E., Tellbach, M., Dyson, M., and Findlay, J. K. (2007). Fibroblast growth factor-9, a local regulator of ovarian function. Endocrinology 148, 3711–3721.
| Fibroblast growth factor-9, a local regulator of ovarian function.Crossref | GoogleScholarGoogle Scholar | 17494997PubMed |
Evans, J. R., Schreiber, N. B., Williams, J. A., and Spicer, L. J. (2014). Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells. J. Anim. Sci. 92, 511–519.
| Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 24664559PubMed |
Gao, X., Ye, J., Yang, C., Zhang, K., Li, X., Luo, L., Ding, J., Li, Y., Cao, H., Ling, Y., Zhang, X., Liu, Y., Fang, F., and Zhang, Y. (2017). Screening and evaluating of long noncoding RNAs in the puberty of goats. BMC Genomics 18, 164.
| Screening and evaluating of long noncoding RNAs in the puberty of goats.Crossref | GoogleScholarGoogle Scholar | 28196477PubMed |
Gao, X., Yao, X., Yang, H., Deng, K., Guo, Y., Zhang, T., Zhang, G., and Wang, F. (2018). Role of FGF9 in sheep testis steroidogenesis during sexual maturation. Anim. Reprod. Sci. 197, 177–184.
| Role of FGF9 in sheep testis steroidogenesis during sexual maturation.Crossref | GoogleScholarGoogle Scholar | 30154034PubMed |
Ghazal, S., McKinnon, B., Zhou, J., Mueller, M., Men, Y., Yang, L., Mueller, M., Flannery, C., Huang, Y., and Taylor, H. S. (2015). H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol. Med. 7, 996–1003.
| H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis.Crossref | GoogleScholarGoogle Scholar | 26089099PubMed |
Gomez, J. A., Wapinski, O. L., Yang, Y. W., Bureau, J. F., Gopinath, S., Monack, D. M., Chang, H. Y., Brahic, M., and Kirkegaard, K. (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152, 743–754.
| The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus.Crossref | GoogleScholarGoogle Scholar | 23415224PubMed |
Guo, Y. X., Nie, H. T., Sun, L. W., Zhang, G. M., Deng, K. P., Fan, Y. X., and Wang, F. (2017). Effects of diet and arginine treatment during the luteal phase on ovarian NO/PGC-1alpha signaling in ewes. Theriogenology 96, 76–84.
| Effects of diet and arginine treatment during the luteal phase on ovarian NO/PGC-1alpha signaling in ewes.Crossref | GoogleScholarGoogle Scholar | 28532842PubMed |
He, X., Chen, S. Y., Yang, Z., Zhang, J., Wang, W., Liu, M. Y., Niu, Y., Wei, X. M., Li, H. M., Hu, W. N., and Sun, G. G. (2018). miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J. Exp. Clin. Cancer Res. 37, 230.
| miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2).Crossref | GoogleScholarGoogle Scholar | 30227870PubMed |
Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K. I., Wilhelm, D., Koopman, P., and Kanai, Y. (2009). A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129–138.
| A critical time window of Sry action in gonadal sex determination in mice.Crossref | GoogleScholarGoogle Scholar | 19036799PubMed |
Hiramatsu, R., Harikae, K., Tsunekawa, N., Kurohmaru, M., Matsuo, I., and Kanai, Y. (2010). FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137, 303–312.
| FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation.Crossref | GoogleScholarGoogle Scholar | 20040496PubMed |
Hotta, Y., Nakamura, H., Konishi, M., Murata, Y., Takagi, H., Matsumura, S., Inoue, K., Fushiki, T., and Itoh, N. (2009). Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633.
| Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.Crossref | GoogleScholarGoogle Scholar | 19589869PubMed |
Hu, K., Zhang, J., and Liang, M. (2017). LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18–4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell. Dev. Biol. Anim. 53, 277–284.
| LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18–4 by acting as a decoy for microRNA-19b-3p.Crossref | GoogleScholarGoogle Scholar | 27822884PubMed |
Huang, J. K., Ma, L., Song, W. H., Lu, B. Y., Huang, Y. B., Dong, H. M., Ma, X. K., Zhu, Z. Z., and Zhou, R. (2017). LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion. J. Cell. Biochem. 118, 4821–4830.
| LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion.Crossref | GoogleScholarGoogle Scholar | 28543663PubMed |
Hwang, H. W., Wentzel, E. A., and Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100.
| A hexanucleotide element directs microRNA nuclear import.Crossref | GoogleScholarGoogle Scholar | 17204650PubMed |
Itoh, N., and Ornitz, D. M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130.
| Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 20940169PubMed |
Jiang, X., Cao, X., Huang, Y., Chen, J., Yao, X., Zhao, M., Liu, Y., Meng, J., Li, P., Li, Z., Yao, J., Smith, G. W., and Lv, L. (2015). Effects of treatment with Astragalus membranaceus on function of rat Leydig cells. BMC Complement. Altern. Med. 15, 261.
| Effects of treatment with Astragalus membranaceus on function of rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 26231491PubMed |
Lai, F., Orom, U. A., Cesaroni, M., Beringer, M., Taatjes, D. J., Blobel, G. A., and Shiekhattar, R. (2013). Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501.
| Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.Crossref | GoogleScholarGoogle Scholar | 23417068PubMed |
Lai, M. S., Cheng, Y. S., Chen, P. R., Tsai, S. J., and Huang, B. M. (2014). Fibroblast growth factor 9 activates AKT and MAPK pathways to stimulate steroidogenesis in mouse Leydig cells. PLoS One 9, e90243.
| Fibroblast growth factor 9 activates AKT and MAPK pathways to stimulate steroidogenesis in mouse Leydig cells.Crossref | GoogleScholarGoogle Scholar | 25464005PubMed |
Liang, H., Luo, R., Chen, X., Zhao, Y., and Tan, A. (2017). miR-187 inhibits the growth of cervical cancer cells by targeting FGF9. Oncol. Rep. 38, 1977–1984.
| miR-187 inhibits the growth of cervical cancer cells by targeting FGF9.Crossref | GoogleScholarGoogle Scholar | 28849071PubMed |
Lin, Y. M., Tsai, C. C., Chung, C. L., Chen, P. R., Sun, H. S., Tsai, S. J., and Huang, B. M. (2010). Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int. J. Androl. 33, 545–553.
| Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells.Crossref | GoogleScholarGoogle Scholar | 19508331PubMed |
Lovicu, F. J., and Overbeek, P. A. (1998). Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125, 3365–3377.
| 9693140PubMed |
Lu, W., Huang, S. Y., Su, L., Zhao, B. X., and Miao, J. Y. (2016). Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707–5p and miR-4767 in vascular endothelial cells. Sci. Rep. 6, 21620.
| Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707–5p and miR-4767 in vascular endothelial cells.Crossref | GoogleScholarGoogle Scholar | 26887505PubMed |
Miyamoto, M., Naruo, K., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T. (1993). Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol. 13, 4251–4259.
| Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property.Crossref | GoogleScholarGoogle Scholar | 8321227PubMed |
Ni, M. J., Hu, Z. H., Liu, Q., Liu, M. F., Lu, M. H., Zhang, J. S., Zhang, L., and Zhang, Y. L. (2011). Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 6, e26053.
| Identification and characterization of a novel non-coding RNA involved in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 22022505PubMed |
Nishant, K. T., Ravishankar, H., and Rao, M. R. (2004). Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol. Cell. Biol. 24, 5620–5634.
| Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA.Crossref | GoogleScholarGoogle Scholar | 15169920PubMed |
Ostrer, H., Huang, H. Y., Masch, R. J., and Shapiro, E. (2007). A cellular study of human testis development. Sex Dev. 1, 286–292.
| A cellular study of human testis development.Crossref | GoogleScholarGoogle Scholar | 18391539PubMed |
Pui, H. P., and Saga, Y. (2017). Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling. Mech Dev 144, 125–139.
| Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling.Crossref | GoogleScholarGoogle Scholar | 28341395PubMed |
Sanders, E. J., and Harvey, S. (2008). Peptide hormones as developmental growth and differentiation factors. Dev. Dyn. 237, 1537–1552.
| Peptide hormones as developmental growth and differentiation factors.Crossref | GoogleScholarGoogle Scholar | 18498096PubMed |
Schütz, L. F., Schreiber, N. B., Gilliam, J. N., Cortinovis, C., Totty, M. L., Caloni, F., Evans, J. R., and Spicer, L. J. (2016). Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle. J. Dairy Sci. 99, 9143–9151.
| Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 27614836PubMed |
Shi, L., Song, R., Yao, X., and Ren, Y. (2017). Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 93, 24–32.
| Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro.Crossref | GoogleScholarGoogle Scholar | 28257863PubMed |
Song, Y. X., Sun, J. X., Zhao, J. H., Yang, Y. C., Shi, J. X., Wu, Z. H., Chen, X. W., Gao, P., Miao, Z. F., and Wang, Z. N. (2017). Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat. Commun. 8, 289.
| Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion.Crossref | GoogleScholarGoogle Scholar | 28819095PubMed |
Sun, C., Fukui, H., Hara, K., Zhang, X. X., Kitayama, Y., Eda, H., Tomita, T., Oshima, T., Kikuchi, S., Watari, J., Sasako, M., and Miwa, H. (2015). FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer 15, 333.
| FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells.Crossref | GoogleScholarGoogle Scholar | 25925261PubMed |
Tian, R., Yao, C., Yang, C., Zhu, Z., Li, C., Zhi, E., Wang, J., Li, P., Chen, H., Yuan, Q., He, Z., and Li, Z. (2019). Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation. Stem Cell Res. Ther. 10, 40.
| Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation.Crossref | GoogleScholarGoogle Scholar | 30670081PubMed |
Vernon, R. K., and Spicer, L. J. (1994). Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells. J. Anim. Sci. 72, 2696–2702.
| Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 7883629PubMed |
Wang, K. C., and Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914.
| Molecular mechanisms of long noncoding RNAs.Crossref | GoogleScholarGoogle Scholar | 21925379PubMed |
White, K. E., Evans, W. E., O’Riordan, J. L. H., Speer, M. C., Econs, M. J., Lorenz-Depiereux, B., Grabowski, M., Meitinger, T., and Strom, T. M. (2000). Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348.
| Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.Crossref | GoogleScholarGoogle Scholar |
Willerton, L., Smith, R. A., Russell, D., and Mackay, S. (2004). Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. Int. J. Dev. Biol. 48, 637–643.
| Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse.Crossref | GoogleScholarGoogle Scholar | 15470636PubMed |
Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., Bassel-Duby, R., Sanes, J. R., and Olson, E. N. (2009). MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554.
| MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice.Crossref | GoogleScholarGoogle Scholar | 20007902PubMed |
Zhang, L., Lu, H., Xin, D., Cheng, H., and Zhou, R. (2010). A novel ncRNA gene from mouse Chromosome 5 trans-splices with Dmrt1 on Chromosome 19. Biochem. Biophys. Res. Commun. 400, 696–700.
| A novel ncRNA gene from mouse Chromosome 5 trans-splices with Dmrt1 on Chromosome 19.Crossref | GoogleScholarGoogle Scholar | 20816665PubMed |