Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Arcuate nucleus kisspeptin response to increased nutrition in rams

S. E. Rietema A , P. A. R. Hawken A , C. J. Scott B , M. N. Lehman C , G. B. Martin https://orcid.org/0000-0002-1905-7934 A * and J. T. Smith https://orcid.org/0000-0002-3450-9505 D E *
+ Author Affiliations
- Author Affiliations

A School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

B School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia.

C Brain Health Research Institute and Department of Biological Sciences, Kent State University, PO Box 5190, Kent, OH 44242-0001, USA.

D The School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.

E Corresponding author. Email: jeremy.smith@uwa.edu.au

Reproduction, Fertility and Development 31(11) 1682-1691 https://doi.org/10.1071/RD19063
Submitted: 18 February 2019  Accepted: 16 June 2019   Published: 12 September 2019

Abstract

Rams respond to acute nutritional supplementation by increasing the frequency of gonadotrophin-releasing hormone (GnRH) pulses. Kisspeptin neurons may mediate the effect of environmental cues on GnRH secretion, so we tested whether the ram response to nutrition involves activation of kisspeptin neurons in the arcuate nucleus (ARC), namely kisspeptin, neurokin B, dynorphin (KNDy) neurons. Rams were given extra lupin grain with their normal ration. Blood was sampled before feeding, and continued until animals were killed for collection of brain tissue at 2 or 11 h after supplementation. In supplemented rams, LH pulse frequency increased after feeding, whereas control animals showed no change. Within the caudal ARC, there were more kisspeptin neurons in supplemented rams than in controls and a higher proportion of kisspeptin cells coexpressed Fos, regardless of the time the rams were killed. There were more Fos cells in the mid-ARC and mid-dorsomedial hypothalamus of the supplemented compared with control rams. No effect of nutrition was found on kisspeptin expression in the rostral or mid-ARC, or on GnRH expression in the preoptic area. Kisspeptin neurons in the caudal ARC appear to mediate the increase in GnRH and LH production due to acute nutritional supplementation, supporting the hypothesised role of the KNDy neurons as the pulse generator for GnRH.

Additional keywords: energy balance, fertility, neuroendocrinology, reproduction.


References

Amstalden, M., Coolen, L. M., Hemmerle, A. M., Billings, H. J., Connors, J. M., Goodman, R. L., and Lehman, M. N. (2010). Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 22, 1–12.
Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones.Crossref | GoogleScholarGoogle Scholar | 19912479PubMed |

Backholer, K., Smith, J. T., Rao, A., Pereira, A., Iqbal, J., Ogawa, S., Li, Q., and Clarke, I. J. (2010). Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 151, 2233–2243.
Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells.Crossref | GoogleScholarGoogle Scholar | 20207832PubMed |

Blache, D., Tjondronegoro, S., Blackberry, M. A., Anderson, S. T., Curlewis, J. D., and Martin, G. B. (1997). Gonadotrophin and prolactin secretion in castrated male sheep following subcutaneous or intracranial treatment with testicular hormones. Endocrine 7, 235–243.
Gonadotrophin and prolactin secretion in castrated male sheep following subcutaneous or intracranial treatment with testicular hormones.Crossref | GoogleScholarGoogle Scholar | 9549050PubMed |

Blache, D., Adam, C. L., and Martin, G. B. (2002). The mature male sheep: a model to study the effects of nutrition on the reproductive axis. Reprod. Suppl. 59, 219–233.
| 12698984PubMed |

Blache, D., Zhang, S., and Martin, G. B. (2003). Fertility in male sheep: modulators of the acute effects of nutrition on the reproductive axis of male sheep. Reprod. Suppl. 61, 387–402.
| 14635950PubMed |

Blache, D., Zhang, S., and Martin, G. B. (2006). Dynamic and integrative aspects of the regulation of reproduction by metabolic status in male sheep. Reprod. Nutr. Dev. 46, 379–390.
Dynamic and integrative aspects of the regulation of reproduction by metabolic status in male sheep.Crossref | GoogleScholarGoogle Scholar | 16824447PubMed |

Boukhliq, R., Goodman, R. L., Berriman, S. J., Adrian, B., and Lehman, M. N. (1999). A subset of gonadotropin-releasing hormone neurons in the ovine medial basal hypothalamus is activated during increased pulsatile luteinizing hormone secretion. Endocrinology 140, 5929–5936.
A subset of gonadotropin-releasing hormone neurons in the ovine medial basal hypothalamus is activated during increased pulsatile luteinizing hormone secretion.Crossref | GoogleScholarGoogle Scholar | 10579360PubMed |

Castellano, J. M., Navarro, V. M., Fernandez-Fernandez, R., Nogueiras, R., Tovar, S., Roa, J., Vazquez, M. J., Vigo, E., Casanueva, F. F., Aguilar, E., Pinilla, L., Dieguez, C., and Tena-Sempere, M. (2005). Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 146, 3917–3925.
Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition.Crossref | GoogleScholarGoogle Scholar | 15932928PubMed |

Castellano, J. M., Navarro, V. M., Fernandez-Fernandez, R., Roa, J., Vigo, E., Pineda, R., Dieguez, C., Aguilar, E., Pinilla, L., and Tena-Sempere, M. (2006). Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 55, 2602–2610.
Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats.Crossref | GoogleScholarGoogle Scholar | 16936210PubMed |

Cernea, M., Padmanabhan, V., Goodman, R. L., Coolen, L. M., and Lehman, M. N. (2015). Prenatal testosterone treatment leads to changes in the morphology of KNDy neurons, their inputs, and projections to GnRH cells in female sheep. Endocrinology 156, 3277–3291.
Prenatal testosterone treatment leads to changes in the morphology of KNDy neurons, their inputs, and projections to GnRH cells in female sheep.Crossref | GoogleScholarGoogle Scholar | 26061725PubMed |

Cheng, G., Coolen, L. M., Padmanabhan, V., Goodman, R. L., and Lehman, M. N. (2010). The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 151, 301–311.
The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep.Crossref | GoogleScholarGoogle Scholar | 19880810PubMed |

Clarke, I. J. (2011). Control of GnRH secretion: one step back. Front. Neuroendocrinol. 32, 367–375.
Control of GnRH secretion: one step back.Crossref | GoogleScholarGoogle Scholar | 21216259PubMed |

Clarke, I. J., Li, Q., Henry, B. A., and Millar, R. P. (2018). Continuous kisspeptin restores luteinizing hormone pulsatility following cessation by a neurokinin B antagonist in female sheep. Endocrinology 159, 639–646.
Continuous kisspeptin restores luteinizing hormone pulsatility following cessation by a neurokinin B antagonist in female sheep.Crossref | GoogleScholarGoogle Scholar | 29126131PubMed |

Clarkson, J., Han, S. Y., Piet, R., McLennan, T., Kane, G. M., Ng, J., Porteous, R. W., Kim, J. S., Colledge, W. H., Iremonger, K. J., and Herbison, A. E. (2017). Definition of the hypothalamic GnRH pulse generator in mice. Proc. Natl Acad. Sci. USA 114, E10216–E10223.
Definition of the hypothalamic GnRH pulse generator in mice.Crossref | GoogleScholarGoogle Scholar | 29109258PubMed |

Cravo, R. M., Margatho, L. O., Osborne-Lawrence, S., Donato, J., Atkin, S., Bookout, A. L., Rovinsky, S., Frazao, R., Lee, C. E., Gautron, L., Zigman, J. M., and Elias, C. F. (2011). Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 173, 37–56.
Characterization of Kiss1 neurons using transgenic mouse models.Crossref | GoogleScholarGoogle Scholar | 21093546PubMed |

Cravo, R. M., Frazao, R., Perello, M., Osborne-Lawrence, S., Williams, K. W., Zigman, J. M., Vianna, C., and Elias, C. F. (2013). Leptin signaling in kiss1 neurons arises after pubertal development. PLoS One 8, e58698.
Leptin signaling in kiss1 neurons arises after pubertal development.Crossref | GoogleScholarGoogle Scholar | 23505551PubMed |

De Bond, J. A., Li, Q., Millar, R. P., Clarke, I. J., and Smith, J. T. (2013). Kisspeptin signaling is required for the luteinizing hormone response in anestrous ewes following the introduction of males. PLoS One 8, e57972.
Kisspeptin signaling is required for the luteinizing hormone response in anestrous ewes following the introduction of males.Crossref | GoogleScholarGoogle Scholar | 23469121PubMed |

Enriori, P. J., Sinnayah, P., Simonds, S. E., Garcia Rudaz, C., and Cowley, M. A. (2011). Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197.
Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance.Crossref | GoogleScholarGoogle Scholar | 21865462PubMed |

Estrada, K. M., Clay, C. M., Pompolo, S., Smith, J. T., and Clarke, I. J. (2006). Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback. J. Neuroendocrinol. 18, 806–809.
Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-positive feedback.Crossref | GoogleScholarGoogle Scholar | 16965299PubMed |

Ezzat, A., Pereira, A., and Clarke, I. J. (2015). Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not the pulse generator. Endocrinology 156, 1828–1837.
Kisspeptin is a component of the pulse generator for GnRH secretion in female sheep but not the pulse generator.Crossref | GoogleScholarGoogle Scholar | 25710282PubMed |

Fabre-Nys, C., Cognie, J., Dufourny, L., Ghenim, M., Martinet, S., Lasserre, O., Lomet, D., Millar, R. P., Ohkura, S., and Suetomi, Y. (2017). The two populations of kisspeptin neurons are involved in the ram-induced LH pulsatile secretion and LH surge in anestrous ewes. Endocrinology 158, 3914–3928.
The two populations of kisspeptin neurons are involved in the ram-induced LH pulsatile secretion and LH surge in anestrous ewes.Crossref | GoogleScholarGoogle Scholar | 28938486PubMed |

Fontes, M. A., Tagawa, T., Polson, J. W., Cavanagh, S. J., and Dampney, R. A. (2001). Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am. J. Physiol. Heart Circ. Physiol. 280, H2891–H2901.
Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus.Crossref | GoogleScholarGoogle Scholar | 11356650PubMed |

Franceschini, I., Lomet, D., Cateau, M., Delsol, G., Tillet, Y., and Caraty, A. (2006). Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci. Lett. 401, 225–230.
Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha.Crossref | GoogleScholarGoogle Scholar | 16621281PubMed |

Frazao, R., Dungan Lemko, H. M., da Silva, R. P., Ratra, D. V., Lee, C. E., Williams, K. W., Zigman, J. M., and Elias, C. F. (2014). Estradiol modulates Kiss1 neuronal response to ghrelin. Am. J. Physiol. Endocrinol. Metab. 306, E606–E614.
Estradiol modulates Kiss1 neuronal response to ghrelin.Crossref | GoogleScholarGoogle Scholar | 24473434PubMed |

Goodman, R. L., Lehman, M. N., Smith, J. T., Coolen, L. M., de Oliveira, C. V., Jafarzadehshirazi, M. R., Pereira, A., Iqbal, J., Caraty, A., Ciofi, P., and Clarke, I. J. (2007). Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148, 5752–5760.
Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B.Crossref | GoogleScholarGoogle Scholar | 17823266PubMed |

Goodman, R. L., Hileman, S. M., Nestor, C. C., Porter, K. L., Connors, J. M., Hardy, S. L., Millar, R. P., Cernea, M., Coolen, L. M., and Lehman, M. N. (2013). Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes. Endocrinology 154, 4259–4269.
Kisspeptin, neurokinin B, and dynorphin act in the arcuate nucleus to control activity of the GnRH pulse generator in ewes.Crossref | GoogleScholarGoogle Scholar | 23959940PubMed |

Guan, Y., and Martin, G. B. (2017). Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model. Reproduction 154, R133–R141.
Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model.Crossref | GoogleScholarGoogle Scholar | 28982938PubMed |

Guan, Y., Liang, G., Martin, G. B., and Guan, L. L. (2017). Functional changes in mRNA expression and alternative pre-mRNA splicing associated with the effects of nutrition on apoptosis and spermatogenesis in the adult testis. BMC Genomics 18, 64.
Functional changes in mRNA expression and alternative pre-mRNA splicing associated with the effects of nutrition on apoptosis and spermatogenesis in the adult testis.Crossref | GoogleScholarGoogle Scholar | 28068922PubMed |

Horiuchi, J., McDowall, L. M., and Dampney, R. A. (2006). Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus. Clin. Exp. Pharmacol. Physiol. 33, 1265–1268.
Differential control of cardiac and sympathetic vasomotor activity from the dorsomedial hypothalamus.Crossref | GoogleScholarGoogle Scholar | 17184513PubMed |

Lehman, M. N., Coolen, L. M., and Goodman, R. L. (2010). Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489.
Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion.Crossref | GoogleScholarGoogle Scholar | 20501670PubMed |

Li, Q., Millar, R. P., Clarke, I. J., and Smith, J. T. (2015). Evidence that neurokinin B controls basal gonadotropin-releasing hormone secretion but is not critical for estrogen-positive feedback in sheep. Neuroendocrinology 101, 161–174.
Evidence that neurokinin B controls basal gonadotropin-releasing hormone secretion but is not critical for estrogen-positive feedback in sheep.Crossref | GoogleScholarGoogle Scholar | 25677216PubMed |

Louis, G. W., Greenwald-Yarnell, M., Phillips, R., Coolen, L. M., Lehman, M. N., and Myers, M. G. (2011). Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152, 2302–2310.
Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis.Crossref | GoogleScholarGoogle Scholar | 21427219PubMed |

Marsh, A. J., Fontes, M. A. P., Killinger, S., Pawlak, D. B., Polson, J. W., and Dampney, R. A. L. (2003). Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension 42, 488–493.
Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus.Crossref | GoogleScholarGoogle Scholar | 12939234PubMed |

Martin, G. B., Oldham, C. M., and Lindsay, D. R. (1980). Increased plasma-LH levels in seasonally anovular merino ewes following the introduction of rams. Anim. Reprod. Sci. 3, 125–132.
Increased plasma-LH levels in seasonally anovular merino ewes following the introduction of rams.Crossref | GoogleScholarGoogle Scholar |

Martin, G. B., Tjondronegoro, S., and Blackberry, M. A. (1994). Effects of nutrition on testicular size and the concentrations of gonadotrophins, testosterone and inhibin in plasma of mature male sheep. J. Reprod. Fertil. 101, 121–128.
Effects of nutrition on testicular size and the concentrations of gonadotrophins, testosterone and inhibin in plasma of mature male sheep.Crossref | GoogleScholarGoogle Scholar | 8064670PubMed |

Merkley, C. M., Coolen, L. M., Goodman, R. L., and Lehman, M. N. (2015). Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurones during the preovulatory LH surge in the ewe. J. Neuroendocrinol. 27, 624–635.
Evidence for changes in numbers of synaptic inputs onto KNDy and GnRH neurones during the preovulatory LH surge in the ewe.Crossref | GoogleScholarGoogle Scholar | 25976424PubMed |

Merriam, G. R., and Wachter, K. W. (1982). Algorithms for the study of episodic hormone secretion. Am. J. Physiol. 243, E310–E318.
| 6889816PubMed |

Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J., Thresher, R. R., Malinge, I., Lomet, D., Carlton, M. B., Colledge, W. H., Caraty, A., and Aparicio, S. A. (2005). Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl Acad. Sci. USA 102, 1761–1766.
Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.Crossref | GoogleScholarGoogle Scholar | 15665093PubMed |

Navarro, V. M., Gottsch, M. L., Chavkin, C., Okamura, H., Clifton, D. K., and Steiner, R. A. (2009). Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J. Neurosci. 29, 11859–11866.
Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse.Crossref | GoogleScholarGoogle Scholar | 19776272PubMed |

Nestor, C. C., Briscoe, A. M., Davis, S. M., Valent, M., Goodman, R. L., and Hileman, S. M. (2012). Evidence of a role for kisspeptin and neurokinin B in puberty of female sheep. Endocrinology 153, 2756–2765.
Evidence of a role for kisspeptin and neurokinin B in puberty of female sheep.Crossref | GoogleScholarGoogle Scholar | 22434087PubMed |

Padilla, S. L., Qiu, J., Nestor, C. C., Zhang, C., Smith, A. W., Whiddon, B. B., Ronnekleiv, O. K., Kelly, M. J., and Palmiter, R. D. (2017). AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc. Natl Acad. Sci. USA 114, 2413–2418.
AgRP to Kiss1 neuron signaling links nutritional state and fertility.Crossref | GoogleScholarGoogle Scholar | 28196880PubMed |

Qiu, J., Fang, Y., Bosch, M. A., Ronnekleiv, O. K., and Kelly, M. J. (2011). Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 152, 1503–1514.
Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels.Crossref | GoogleScholarGoogle Scholar | 21285322PubMed |

Qiu, X., Dowling, A. R., Marino, J. S., Faulkner, L. D., Bryant, B., Bruning, J. C., Elias, C. F., and Hill, J. W. (2013). Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells. Endocrinology 154, 1337–1348.
Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.Crossref | GoogleScholarGoogle Scholar | 23392256PubMed |

Qiu, X., Dao, H., Wang, M., Heston, A., Garcia, K. M., Sangal, A., Dowling, A. R., Faulkner, L. D., Molitor, S. C., Elias, C. F., and Hill, J. W. (2015). Insulin and leptin signaling interact in the mouse Kiss1 Neuron during the peripubertal period. PLoS One 10, e0121974.
Insulin and leptin signaling interact in the mouse Kiss1 Neuron during the peripubertal period.Crossref | GoogleScholarGoogle Scholar | 26714258PubMed |

Rezai-Zadeh, K., Yu, S., Jiang, Y., Laque, A., Schwartzenburg, C., Morrison, C. D., Derbenev, A. V., Zsombok, A., and Munzberg, H. (2014). Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693.
Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake.Crossref | GoogleScholarGoogle Scholar | 25352997PubMed |

Roseweir, A. K., Kauffman, A. S., Smith, J. T., Guerriero, K. A., Morgan, K., Pielecka-Fortuna, J., Pineda, R., Gottsch, M. L., Tena-Sempere, M., Moenter, S. M., Terasawa, E., Clarke, I. J., Steiner, R. A., and Millar, R. P. (2009). Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J. Neurosci. 29, 3920–3929.
Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation.Crossref | GoogleScholarGoogle Scholar | 19321788PubMed |

Smith, J. T., and Clarke, I. J. (2007). Kisspeptin expression in the brain: catalyst for the initiation of puberty. Rev. Endocr. Metab. Disord. 8, 1–9.
Kisspeptin expression in the brain: catalyst for the initiation of puberty.Crossref | GoogleScholarGoogle Scholar | 17334929PubMed |

Smith, J. T., Acohido, B. V., Clifton, D. K., and Steiner, R. A. (2006). KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 18, 298–303.
KiSS-1 neurones are direct targets for leptin in the ob/ob mouse.Crossref | GoogleScholarGoogle Scholar | 16503925PubMed |

Smith, J. T., Li, Q., Pereira, A., and Clarke, I. J. (2009). Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology 150, 5530–5538.
Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 19819940PubMed |

Smith, J. T., Li, Q., Yap, K. S., Shahab, M., Roseweir, A. K., Millar, R. P., and Clarke, I. J. (2011). Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152, 1001–1012.
Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence.Crossref | GoogleScholarGoogle Scholar | 21239443PubMed |

Tjondronegoro, S., Martin, G. B., Sutherland, S. R., and Boukhliq, R. (1996). Interactions between nutrition, testosterone and inhibin in the control of gonadotrophin secretion in mature rams. Reprod. Fertil. Dev. 8, 855–862.
Interactions between nutrition, testosterone and inhibin in the control of gonadotrophin secretion in mature rams.Crossref | GoogleScholarGoogle Scholar | 8876044PubMed |

Tolson, K. P., Garcia, C., Yen, S., Simonds, S., Stefanidis, A., Lawrence, A., Smith, J. T., and Kauffman, A. S. (2014). Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J. Clin. Invest. 124, 3075–3079.
Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity.Crossref | GoogleScholarGoogle Scholar | 24937427PubMed |

True, C., Verma, S., Grove, K. L., and Smith, M. S. (2013). Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology 154, 2821–2832.
Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females.Crossref | GoogleScholarGoogle Scholar | 23736294PubMed |

Wakabayashi, Y., Nakada, T., Murata, K., Ohkura, S., Mogi, K., Navarro, V. M., Clifton, D. K., Mori, Y., Tsukamura, H., Maeda, K., Steiner, R. A., and Okamura, H. (2010). Neurokinin B and dynorphin a in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J. Neurosci. 30, 3124–3132.
Neurokinin B and dynorphin a in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat.Crossref | GoogleScholarGoogle Scholar | 20181609PubMed |

Wakabayashi, Y., Yamamura, T., Sakamoto, K., Mori, Y., and Okamura, H. (2013). Electrophysiological and morphological evidence for synchronized GnRH pulse generator activity among Kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in goats. J. Reprod. Dev. 59, 40–48.
| 23080371PubMed |

Weems, P. W., Witty, C. F., Amstalden, M., Coolen, L. M., Goodman, R. L., and Lehman, M. N. (2016). kappa-Opioid receptor is colocalized in GnRH and KNDy cells in the female ovine and rat brain. Endocrinology 157, 2367–2379.
kappa-Opioid receptor is colocalized in GnRH and KNDy cells in the female ovine and rat brain.Crossref | GoogleScholarGoogle Scholar | 27064940PubMed |

Zhang, S., Blache, D., Blackberry, M. A., and Martin, G. B. (2004). Dynamics of the responses in secretion of luteinising hormone, leptin and insulin following an acute increase in nutrition in mature male sheep. Reprod. Fertil. Dev. 16, 823–829.
Dynamics of the responses in secretion of luteinising hormone, leptin and insulin following an acute increase in nutrition in mature male sheep.Crossref | GoogleScholarGoogle Scholar | 15740706PubMed |

Zhang, S., Blache, D., Blackberry, M. A., and Martin, G. B. (2005). Body reserves affect the reproductive endocrine responses to an acute change in nutrition in mature male sheep. Anim. Reprod. Sci. 88, 257–269.
| 16143216PubMed |