Variations in the adenohypophysis of the expression of proliferating cellular nuclear antigen, oestrogen and androgen receptors in relation to gonadal steroids during pregnancy of viscachas (Lagostomus maximus maximus)
Gabriela J. Rosales A B , Edith Perez A , Graciela B. Rodriguez C , Verónica P. Filippa A B D and Fabian H. Mohamed AA Laboratorio de Histología, Área Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejército de los Andes 950 Bloque I Piso 1°, 5700 San Luis, Argentina.
B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 5700 San Luis, Argentina.
C Laboratorio de Parasitología, Área de Análisis Clínicos, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Avenida Ejercito de los Andes 950, Bloque I, Piso 1°, 5700 San Luis, Argentina.
D Corresponding author. Email: vpfilipp@unsl.edu.ar
Reproduction, Fertility and Development 31(11) 1707-1718 https://doi.org/10.1071/RD18423
Submitted: 24 October 2018 Accepted: 27 May 2019 Published: 27 June 2019
Abstract
Viscachas are native rodents of South America that present a long pregnancy of ~154 days. In this work, we analysed variations in the expression of proliferating cellular nuclear antigen, oestrogen and androgen receptors (ERα and AR) in pituitary pars distalis (PD) and pars tuberalis (PT) in relation to oestradiol and testosterone serum levels in non-pregnant and pregnant viscachas. In PD, cell proliferation increased with pregnancy and lactotrophs proliferated during mid-pregnancy (MP). ERα nuclear-immunoreactive cells (ERαn-ir) were maximal in late pregnancy and AR expression did not vary during pregnancy. In PT, cell proliferation and AR expression increased during pregnancy, but ERα expression was very scarce. The immunostaining pattern of receptors was different in PD and PT. The peak of serum oestradiol and testosterone occurred during MP. Our results suggest that cell proliferation and gonadal receptors might be differentially regulated in the pituitary by oestradiol and testosterone during viscacha pregnancy.
Additional keywords: gestation, hormone receptor, pituitary, proliferation, rodent.
References
Acosta, M., Filippa, V., and Mohamed, F. (2010). Folliculostellate cells in pituitary pars distalis of male viscacha: immunohistochemical, morphometric and ultrastructural study. Eur. J. Histochem. 54, e1.| Folliculostellate cells in pituitary pars distalis of male viscacha: immunohistochemical, morphometric and ultrastructural study.Crossref | GoogleScholarGoogle Scholar | 20353904PubMed |
Aguado, L. I., Hancke, J. L., Rodriguez, S., and Rodriguez, E. M. (1982). Changes in the luteinizing hormone content of the rat pars tuberalis during the estrus cycle and after lesions in the preoptic area. Neuroendocrinology 35, 178–185.
| Changes in the luteinizing hormone content of the rat pars tuberalis during the estrus cycle and after lesions in the preoptic area.Crossref | GoogleScholarGoogle Scholar | 6890152PubMed |
Allanson, M., Foster, C. L., and Cameron, E. (1969). Mitotic activity in the adenohypophysis of pregnant and lactating rabbits. J. Reprod. Fertil. 19, 121–131.
| Mitotic activity in the adenohypophysis of pregnant and lactating rabbits.Crossref | GoogleScholarGoogle Scholar | 5793904PubMed |
Almendral, J. M., Huebsch, D., Blundell, P. A., and Macdonald-Bravo, R. (1987). Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins. Proc. Natl. Acad. Sci. USA 84, 1575–1579.
| Cloning and sequence of the human nuclear protein cyclin: homology with DNA-binding proteins.Crossref | GoogleScholarGoogle Scholar | 2882507PubMed |
Aurich, C. (2011). Reproductive cycles of horses. Anim. Reprod. Sci. 124, 220–228.
| Reproductive cycles of horses.Crossref | GoogleScholarGoogle Scholar | 21377299PubMed |
Ben-Jonathan, N., LaPensee, C. R., and LaPensee, E. W. (2008). What can we learn from rodents about prolactin in humans? Endocr. Rev. 29, 1–41.
| What can we learn from rodents about prolactin in humans?Crossref | GoogleScholarGoogle Scholar | 18057139PubMed |
Bottino, M. C., and Lanari, C. (2010). Localizacion extra nuclear de receptores esteroides y activacion de mecanismos no genomicos. Medicina (B. Aires) 70, 173–184.
| 20447904PubMed |
Busolini, F. I., Rodríguez, G. B., Filippa, V. P., and Mohamed, F. H. (2017). Pigmented cells in the pineal gland of female viscacha (Lagostomus maximus maximus): a histochemical and ultrastructural study. Int. J. Endocrinol. 2017, Article ID 7492960.
| Pigmented cells in the pineal gland of female viscacha (Lagostomus maximus maximus): a histochemical and ultrastructural study.Crossref | GoogleScholarGoogle Scholar | 29391866PubMed |
Carretero, J., Rubio, M., Blanco, E., Burks, D. J., Torres, J. L., Hernández, E., Bodego, P., Riesco, J. M., Juanes, J. A., and Vázquez, R. (2003). Variations in the cellular proliferation of prolactin cells from late pregnancy to lactation in rats. Ann. Anat. 185, 97–101.
| Variations in the cellular proliferation of prolactin cells from late pregnancy to lactation in rats.Crossref | GoogleScholarGoogle Scholar | 12725432PubMed |
Filippa, V., and Mohamed, F. (2006). ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus): immunohistochemical study in relation to season, sex, and growth. Gen. Comp. Endocrinol. 146, 217–225.
| ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus): immunohistochemical study in relation to season, sex, and growth.Crossref | GoogleScholarGoogle Scholar | 16466724PubMed |
Filippa, V., and Mohamed, F. (2008). Immunohistochemical and morphometric study of pituitary pars distalis thyrotrophs of male viscacha (Lagostomus maximus maximus): seasonal variations and effect of melatonin and castration. Anat. Rec. (Hoboken) 291, 400–409.
| Immunohistochemical and morphometric study of pituitary pars distalis thyrotrophs of male viscacha (Lagostomus maximus maximus): seasonal variations and effect of melatonin and castration.Crossref | GoogleScholarGoogle Scholar | 18286616PubMed |
Filippa, V., and Mohamed, F. (2010a). Morphological and morphometric changes of pituitary lactotrophs of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex. Anat. Rec. (Hoboken) 293, 150–161.
| Morphological and morphometric changes of pituitary lactotrophs of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex.Crossref | GoogleScholarGoogle Scholar | 20039438PubMed |
Filippa, V., and Mohamed, F. (2010b). The pituitary of nonpregnant and pregnant viscachas (Lagostomus maximus maximus): a comparative study by immunohistochemistry and morphometric analysis. Zoology 113, 361–372.
| The pituitary of nonpregnant and pregnant viscachas (Lagostomus maximus maximus): a comparative study by immunohistochemistry and morphometric analysis.Crossref | GoogleScholarGoogle Scholar | 20970970PubMed |
Filippa, V., Penissi, A., and Mohamed, F. (2005). Seasonal variations of gonadotropins in the pars distalis male viscacha pituitary. Effect of chronic melatonin treatment. Eur. J. Histochem. 49, 291–300.
| Seasonal variations of gonadotropins in the pars distalis male viscacha pituitary. Effect of chronic melatonin treatment.Crossref | GoogleScholarGoogle Scholar | 16216815PubMed |
Filippa, V., Acosta, M., and Mohamed, F. (2012). Cellular associations of pituitary gonadotrophs in a rodent (Lagostomus maximus maximus) with photoperiod-dependent reproduction. Tissue Cell 44, 351–357.
| Cellular associations of pituitary gonadotrophs in a rodent (Lagostomus maximus maximus) with photoperiod-dependent reproduction.Crossref | GoogleScholarGoogle Scholar | 22749373PubMed |
Filippa, V. P., Rosales, G. J., Cruceño, A. A., and Mohamed, F. H. (2015). Androgen receptor expression in pituitary of male viscacha in relation to growth and reproductive cycle. Int. J. Endocrinol. 2015, 168047.
| Androgen receptor expression in pituitary of male viscacha in relation to growth and reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 25945090PubMed |
Foley, J. F., Dietrich, D. R., Swenberg, J. A., and Maronpot, R. R. (1991). Detection and evaluation of proliferating cell nuclear antigen (PCNA) in rat tissue by an improved immunohistochemical procedure. J. Histotechnol. 14, 237–241.
| Detection and evaluation of proliferating cell nuclear antigen (PCNA) in rat tissue by an improved immunohistochemical procedure.Crossref | GoogleScholarGoogle Scholar |
Foley, J. F., Ton, T., Maronpot, R. R., Butterworth, B., and Goldsworthy, T. L. (1993). Comparison of proliferating cell nuclear antigen to tritiated thymidine as a marker of proliferating hepatocytes in rats. Environ. Health Perspect. 101, 199–205.
Fraunhoffer, N. A., Jensen, F., Leopardo, N., Inserra, P. I. F., Abuelafia, A. M., Espinosa, M. B., Charif, S. E., Dorfman, V. B., and Vitullo, A. D. (2017). Hormonal behavior correlates with follicular recruitment at midgestation in the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). Gen. Comp. Endocrinol. 250, 162–174.
| Hormonal behavior correlates with follicular recruitment at midgestation in the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha).Crossref | GoogleScholarGoogle Scholar | 28645634PubMed |
Gibori, G., Chen, Y. D., Khan, I., Azhar, S., and Reaven, G. M. (1984). Regulation of luteal cell lipoprotein receptors, sterol contents, and steroidogenesis by estradiol in the pregnant rat. Endocrinology 114, 609–617.
| Regulation of luteal cell lipoprotein receptors, sterol contents, and steroidogenesis by estradiol in the pregnant rat.Crossref | GoogleScholarGoogle Scholar | 6317362PubMed |
Gil, E., Forneris, M., Domínguez, S., Penissi, A., Fogal, T., Piezzi, R. S., and Scardapane, L. (2007). Morphological and endocrine study of the ovarian interstitial tissue of viscacha (Lagostomus maximus maximus). Anat. Rec. (Hoboken) 290, 788–794.
| Morphological and endocrine study of the ovarian interstitial tissue of viscacha (Lagostomus maximus maximus).Crossref | GoogleScholarGoogle Scholar | 17530627PubMed |
González, M., Reyes, R., Damas, C., Alonso, R., and Bello, A. R. (2008). Oestrogen receptor α and β in female rat pituitary cells: an immunochemical study. Gen. Comp. Endocrinol. 155, 857–868.
| Oestrogen receptor α and β in female rat pituitary cells: an immunochemical study.Crossref | GoogleScholarGoogle Scholar | 18067893PubMed |
Handa, R. J., Reid, D. L., and Resko, J. A. (1986). Androgen receptors in brain and pituitary of female rats: cyclic changes and comparisons with the male. Biol. Reprod. 34, 293–303.
| Androgen receptors in brain and pituitary of female rats: cyclic changes and comparisons with the male.Crossref | GoogleScholarGoogle Scholar | 3485449PubMed |
Handa, R. J., Stadelman, H. L., and Resko, J. A. (1987). Effect of estrogen on androgen receptor dynamics in female rat pituitary. Endocrinology 121, 84–89.
| Effect of estrogen on androgen receptor dynamics in female rat pituitary.Crossref | GoogleScholarGoogle Scholar | 3496212PubMed |
Heaney, A. P., Fernando, M., and Melmed, S. (2002). Functional role of estrogen in pituitary tumor pathogenesis. J. Clin. Invest. 109, 277–283.
| Functional role of estrogen in pituitary tumor pathogenesis.Crossref | GoogleScholarGoogle Scholar | 11805140PubMed |
Hunt, T. E. (1949). Mitotic activity in the hypophysis of the rat during pregnancy and lactation. Anat. Rec. 105, 361–373.
| Mitotic activity in the hypophysis of the rat during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 15398726PubMed |
Jahn, G. A., Burdman, J. A., and Deis, R. P. (1984). Regulation of pituitary DNA synthesis during different reproductive states in the female rat: role of estrogens and prolactin. Mol. Cell. Endocrinol. 35, 113–119.
| Regulation of pituitary DNA synthesis during different reproductive states in the female rat: role of estrogens and prolactin.Crossref | GoogleScholarGoogle Scholar | 6734926PubMed |
Jensen, F., Willis, M. A., Albamonte, M. S., Espinosa, M. B., and Vitullo, A. D. (2006). Naturally suppressed apoptosis prevents follicular atresia and oocyte reserve decline in the adult ovary of Lagostomus maximus (Rodentia, Caviomorpha). Reproduction 132, 301–308.
| Naturally suppressed apoptosis prevents follicular atresia and oocyte reserve decline in the adult ovary of Lagostomus maximus (Rodentia, Caviomorpha).Crossref | GoogleScholarGoogle Scholar | 16885538PubMed |
Kikuta, T., Yamamoto, K., Namiki, H., and Hayashi, S. (1993). Immunocytochemical localization of estrogen receptor in various anterior pituitary hormone cells of adult male and female rats. Acta Histochem. Cytochem. 26, 609–614.
| Immunocytochemical localization of estrogen receptor in various anterior pituitary hormone cells of adult male and female rats.Crossref | GoogleScholarGoogle Scholar |
Korf, H. W. (2018). Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen. Comp. Endocrinol. 258, 236–243.
| Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms.Crossref | GoogleScholarGoogle Scholar | 28511899PubMed |
Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. A. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863–870.
| Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.Crossref | GoogleScholarGoogle Scholar | 9048584PubMed |
Lawnicka, H., Ptasinska-Wnuk, D., Mucha, S., Kunert-Radek, J., Pawlikowski, M., and Stepien, H. (2012). The involvement of angiotensin type 1 and type 2 receptors in estrogen-induced cell proliferation and vascular endothelial growth factor expression in the rat anterior pituitary. ScientificWorldJournal 2012, 358102.
| The involvement of angiotensin type 1 and type 2 receptors in estrogen-induced cell proliferation and vascular endothelial growth factor expression in the rat anterior pituitary.Crossref | GoogleScholarGoogle Scholar | 22645419PubMed |
Leopardo, N. P., Jensen, F., Willis, M. A., Espinosa, M. B., and Vitullo, A. D. (2011). The developing ovary of the South American plains vizcacha, Lagostomus maximus (Mammalia, Rodentia): massive proliferation with no sign of apoptosis-mediated germ cell attrition. Reproduction 141, 633–641.
| The developing ovary of the South American plains vizcacha, Lagostomus maximus (Mammalia, Rodentia): massive proliferation with no sign of apoptosis-mediated germ cell attrition.Crossref | GoogleScholarGoogle Scholar | 21339288PubMed |
Lyles, D., Tien, J. H., McCobb, D. P., and Zeeman, M. L. (2010). Pituitary network connectivity as a mechanism for the luteinising hormone surge. J. Neuroendocrinol. 22, 1267–1278.
| Pituitary network connectivity as a mechanism for the luteinising hormone surge.Crossref | GoogleScholarGoogle Scholar | 20961340PubMed |
Melmed, S. (2003). Mechanisms for pituitary tumorigenesis: the plastic pituitary. J. Clin. Invest. 112, 1603–1618.
| Mechanisms for pituitary tumorigenesis: the plastic pituitary.Crossref | GoogleScholarGoogle Scholar | 14660734PubMed |
Migaud, M., Batailler, M., Pillon, D., Franceschini, I., and Malpaux, B. (2011). Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J. Biol. Rhythms 26, 486–496.
| Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis.Crossref | GoogleScholarGoogle Scholar | 22215607PubMed |
Mikami, S., Chiba, S., Hojo, H., Taniguchi, K., Kubokawa, K., and Ishii, S. (1988). Immunocytochemical studies on the pituitary pars distalis of the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus. Cell Tissue Res. 251, 291–299.
| Immunocytochemical studies on the pituitary pars distalis of the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus.Crossref | GoogleScholarGoogle Scholar | 3345544PubMed |
Mitchner, N. A., Garlick, C., and Ben-Jonathan, N. (1998). Cellular distribution and gene regulation of estrogen receptors alpha and beta in the rat pituitary gland. Endocrinology 139, 3976–3983.
| Cellular distribution and gene regulation of estrogen receptors alpha and beta in the rat pituitary gland.Crossref | GoogleScholarGoogle Scholar | 9724053PubMed |
Mohamed, F., Fogal, T., Dominguez, S., Scardapane, L., Guzmán, J., and Piezzi, R. S. (2000). Colloid in the pituitary pars distalis of viscacha (Lagostomus maximus maximus): ultrastructure and occurrence in relation to season, sex and growth. Anat. Rec. 258, 252–261.
| Colloid in the pituitary pars distalis of viscacha (Lagostomus maximus maximus): ultrastructure and occurrence in relation to season, sex and growth.Crossref | GoogleScholarGoogle Scholar | 10705345PubMed |
Morret-Rauis, M., Degraef, C., and Galand, P. (1990). S phase duration measurement by combined PCNA/cyclin immunostaining and radioautography after a single pulse labelling with 3H-thymidine. Cell Biol. Int. Rep. 14, 765–774.
| S phase duration measurement by combined PCNA/cyclin immunostaining and radioautography after a single pulse labelling with 3H-thymidine.Crossref | GoogleScholarGoogle Scholar | 1980636PubMed |
Pelletier, G., Labrie, C., and Labrie, F. (2000). Localization of oestrogen receptor, oestrogen receptor and androgen receptors in the rat reproductive organs. J. Endocrinol. 165, 359–370.
| Localization of oestrogen receptor, oestrogen receptor and androgen receptors in the rat reproductive organs.Crossref | GoogleScholarGoogle Scholar | 10810300PubMed |
Perez Romera, E., Mohamed, F., Filippa, V., Fogal, T., Dominguez, S., Scardapane, L., and Piezzi, R. S. (2005). Ultrastructural and immunocytochemical studies of the viscacha (Lagostomus maximus maximus) pituitary pars tuberalis. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 284A, 431–438.
| Ultrastructural and immunocytochemical studies of the viscacha (Lagostomus maximus maximus) pituitary pars tuberalis.Crossref | GoogleScholarGoogle Scholar |
Redford, K. H., and Eisenberg, J. P. (1992). Chapter 14: The effects of humans on the mammal fauna of Southern South America. In ‘Mammals of the Neotropics. Vol. 2. The Southern Cone: Chile, Argentina, Uruguay, Paraguay’. pp. 420–424. (The University of Chicago Press: Chicago.)
Sabatino, M. E., Petiti, J. P., Del Valle Sosa, L., Pérez, P. A., Gutiérrez, S., Leimgruber, C., Latini, A., Torres, A. I., and De Paul, A. L. (2015). Evidence of cellular senescence during the development of estrogen-induced pituitary tumors. Endocr. Relat. Cancer 22, 299–317.
| Evidence of cellular senescence during the development of estrogen-induced pituitary tumors.Crossref | GoogleScholarGoogle Scholar | 25792544PubMed |
Sakuma, S., Shirasawa, N., and Yoshimura, F. (1984). A histometrical study of immunohistochemically identified mitotic adenohypophysial cells in immature and mature castrated rats. J. Endocrinol. 100, 323–328.
| A histometrical study of immunohistochemically identified mitotic adenohypophysial cells in immature and mature castrated rats.Crossref | GoogleScholarGoogle Scholar | 6321627PubMed |
Sarkar, D. K. (2006). Genesis of prolactinomas: studies using estrogen-treated animals. Front. Horm. Res. 35, 32–49.
| Genesis of prolactinomas: studies using estrogen-treated animals.Crossref | GoogleScholarGoogle Scholar | 16809921PubMed |
Scheithauer, B. W., Sano, T., Kovacs, K. T., Young, W. F., Ryan, N., and Randall, R. V. (1990). The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin. Proc. 65, 461–474.
| The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases.Crossref | GoogleScholarGoogle Scholar | 2159093PubMed |
Soji, T., Yashiro, T., and Herbert, D. C. (1989). Granulated ‘marginal cell layer’ in the rat anterior pituitary gland. Tissue Cell 21, 849–856.
| Granulated ‘marginal cell layer’ in the rat anterior pituitary gland.Crossref | GoogleScholarGoogle Scholar | 2629167PubMed |
Stefaneanu, L., Rindi, G., Horvath, E., Murphy, D., Polak, J. M., and Kovacs, K. (1992). Morphology of adenohypophysial tumors in mice transgenic for vasopressin-SV40 hybrid oncogene. Endocrinology 130, 1789–1795.
| 1312426PubMed |
Stefaneanu, L., Kovacs, K., Horvath, E., Lloyd, R. V., Buchfelder, M., Fahlbusch, R., and Smyth, H. (1994). In situ hybridization study of estrogen receptor messenger ribonucleic acid in human adenohypophysial cells and pituitary adenomas. J. Clin. Endocrinol. Metab. 78, 83–88.
| 8288720PubMed |
Stoeckel, M. E., and Porte, A. (1984). Fine ultrastructure and development of the pars tuberalis in mammals. In ‘Ultrastructure of Endocrine Cells and Tissues’. (Ed. P. M. Motta.) pp. 29–38. (Springer: Boston, MA.)
Taniguchi, Y., Yasutaka, S., Kominami, R., and Shinohara, H. (2002). Proliferation and differentiation of rat anterior pituitary cells. Anat. Embryol. (Berl.) 206, 1–11.
| Proliferation and differentiation of rat anterior pituitary cells.Crossref | GoogleScholarGoogle Scholar | 12478362PubMed |
Toledano, Y., Zonis, S., Ren, S. G., Wawrowsky, K., Chesnokova, V., and Melmed, S. (2012). Estradiol partially recapitulates murine pituitary cell cycle response to pregnancy. Endocrinology 153, 5011–5022.
| Estradiol partially recapitulates murine pituitary cell cycle response to pregnancy.Crossref | GoogleScholarGoogle Scholar | 22851678PubMed |
Tortonese, D. J. (2016). Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding. Domest. Anim. Endocrinol. 56, S191–S203.
| Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding.Crossref | GoogleScholarGoogle Scholar | 27345316PubMed |
Vaillant, C., Chesnel, F., Schausi, D., Tiffoche, C., and Thieulant, M. L. (2002). Expression of estrogen receptor subtypes in rat pituitary gland during pregnancy and lactation. Endocrinology 143, 4249–4258.
| Expression of estrogen receptor subtypes in rat pituitary gland during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 12399419PubMed |
Weir, B. J. (1971). The reproductive physiology of the plains viscacha, Lagostomus maximus. J. Reprod. Fertil. 25, 355–363.
| The reproductive physiology of the plains viscacha, Lagostomus maximus.Crossref | GoogleScholarGoogle Scholar | 5579688PubMed |
Yin, P., and Arita, J. (2000). Differential regulation of prolactin release and lactotrope proliferation during pregnancy, lactation and the estrous cycle. Neuroendocrinology 72, 72–79.
| Differential regulation of prolactin release and lactotrope proliferation during pregnancy, lactation and the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 10971142PubMed |
Yoshida, S., Kato, T., Yako, H., Susa, T., Cai, L. Y., Osuna, M., Inoue, K., and Kato, Y. (2011). Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary. J. Neuroendocrinol. 23, 933–943.
| Significant quantitative and qualitative transition in pituitary stem/progenitor cells occurs during the postnatal development of the rat anterior pituitary.Crossref | GoogleScholarGoogle Scholar | 21815952PubMed |
Zárate, S., Jaita, G., Zaldivar, V., Radl, D., Eijo, G., Ferraris, J., Pisera, D., and Seilicovich, A. (2009). Estrogens exert a rapid apoptotic action in anterior pituitary cells. Am. J. Physiol. Endocrinol. Metab. 296, E664–E671.
| Estrogens exert a rapid apoptotic action in anterior pituitary cells.Crossref | GoogleScholarGoogle Scholar | 19158323PubMed |
Zárate, S., Jaita, G., Ferraris, J., Eijo, G., Magri, ML., Pisera, D., and Seilicovich, A. (2012). Estrogens induce expression of membrane-associated estrogen receptor α isoforms in lactotropes. Plos One 7, e41299.
| Estrogens induce expression of membrane-associated estrogen receptor α isoforms in lactotropes.Crossref | GoogleScholarGoogle Scholar | 22844453PubMed |