Metformin inhibits human spermatozoa motility and signalling pathways mediated by protein kinase A and tyrosine phosphorylation without affecting mitochondrial function
V. Calle-Guisado A , L. Gonzalez-Fernandez A , D. Martin-Hidalgo A , L. J. Garcia-Marin A * and M. J. Bragado A B *A Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), Avda Universidad, University of Extremadura, 10003 Caceres, Spain.
B Corresponding author. Email: jbragado@unex.es
Reproduction, Fertility and Development 31(4) 787-795 https://doi.org/10.1071/RD18256
Submitted: 6 July 2018 Accepted: 12 November 2018 Published: 19 December 2018
Abstract
Metformin is a leading antidiabetic drug that is used worldwide in the treatment of diabetes mellitus. This biguanide exerts metabolic and pleiotropic effects in somatic cells, although its in vitro actions on human spermatozoa remain unknown. The present study investigated the effects of metformin on human sperm function. Human spermatozoa were incubated in the presence or absence of 10 mM metformin for 8 or 20 h, and motility was measured by computer-aided sperm analysis (CASA); other parameters were evaluated by flow cytometry. Metformin significantly reduced the percentage of motile, progressive and rapid spermatozoa and significantly decreased sperm velocity. Metformin did not affect viability, mitochondrial membrane potential (MMP) or mitochondrial superoxide anion generation of human spermatozoa at any time studied. However, metformin clearly inhibited the protein kinase (PK) A pathway and protein tyrosine phosphorylation at 8 and 20 h, key regulatory pathways for correct sperm function. In summary, metformin treatment of human spermatozoa had a detrimental effect on motility and inhibited essential sperm signalling pathways, namely PKA and protein tyrosine phosphorylation, without affecting physiological parameters (viability, MMP, mitochondrial superoxide anion generation). Given the growing clinical use of metformin in different pathologies in addition to diabetes, this study highlights an adverse effect of metformin on spermatozoa and its relevance in terms of human fertility in patients who potentially could be treated with metformin in the future.
Additional keywords: antidiabetic drug, progressive motility, superoxide generation, viability.
References
Adaramoye, O., Akanni, O., Adesanoye, O., Labo-Popoola, O., and Olaremi, O. (2012). Evaluation of toxic effects of metformin hydrochloride and glibenclamide on some organs of male rats. Niger. J. Physiol. Sci. 27, 137–144.Algire, C., Moiseeva, O., Deschenes-Simard, X., Amrein, L., Petruccelli, L., Birman, E., Viollet, B., Ferbeyre, G., and Pollak, M. N. (2012). Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev. Res. (Phila.) 5, 536–543.
| Metformin reduces endogenous reactive oxygen species and associated DNA damage.Crossref | GoogleScholarGoogle Scholar |
Anisimov, V. N., Berstein, L. M., Popovich, I. G., Zabezhinski, M. A., Egormin, P. A., Piskunova, T. S., Semenchenko, A. V., Tyndyk, M. L., Yurova, M. N., Kovalenko, I. G., and Poroshina, T. E. (2011). If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany N.Y.) 3, 148–157.
| If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice.Crossref | GoogleScholarGoogle Scholar |
Attia, S. M., Helal, G. K., and Alhaider, A. A. (2009). Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem. Biol. Interact. 180, 296–304.
| Assessment of genomic instability in normal and diabetic rats treated with metformin.Crossref | GoogleScholarGoogle Scholar |
Barreto-Torres, G., Hernandez, J. S., Jang, S., Rodriguez-Munoz, A. R., Torres-Ramos, C. A., Basnakian, A. G., and Javadov, S. (2015). The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha–cyclophilin D interaction in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 308, H749–H758.
| The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha–cyclophilin D interaction in cardiomyocytes.Crossref | GoogleScholarGoogle Scholar |
Ben Sahra, I., Regazzetti, C., Robert, G., Laurent, K., Le Marchand-Brustel, Y., Auberger, P., Tanti, J. F., Giorgetti-Peraldi, S., and Bost, F. (2011). Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366–4372.
| Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1.Crossref | GoogleScholarGoogle Scholar |
Bertoldo, M. J., Faure, M., Dupont, J., and Froment, P. (2014a). Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation. Ann. Transl. Med. 2, 55.
| Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation.Crossref | GoogleScholarGoogle Scholar |
Bertoldo, M. J., Guibert, E., Tartarin, P., Guillory, V., and Froment, P. (2014b). Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology 68, 262–268.
| Effect of metformin on the fertilizing ability of mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Bosman, E., Esterhuizen, A. D., Rodrigues, F. A., Becker, P. J., and Hoffmann, W. A. (2015). Effect of metformin therapy and dietary supplements on semen parameters in hyperinsulinaemic males. Andrologia 47, 974–979.
| Effect of metformin therapy and dietary supplements on semen parameters in hyperinsulinaemic males.Crossref | GoogleScholarGoogle Scholar |
Calle-Guisado, V., Hurtado de Llera, A., Gonzalez-Fernandez, L., Bragado, M. J., and Garcia-Marin, L. J. (2017a). Human sperm motility is downregulated by the AMPK activator A769662. Andrology 5, 1131–1140.
| Human sperm motility is downregulated by the AMPK activator A769662.Crossref | GoogleScholarGoogle Scholar |
Calle-Guisado, V., Hurtado de Llera, A., Martin-Hidalgo, D., Mijares, J., Gil, M. C., Alvarez, I. S., Bragado, M. J., and Garcia-Marin, L. J. (2017b). AMP-activated kinase on human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility. Asian J. Androl. 19, 707–714.
| AMP-activated kinase on human spermatozoa: identification, intracellular localization, and key function in the regulation of sperm motility.Crossref | GoogleScholarGoogle Scholar |
Cho, N. H. (Chair) (2017). ‘IDF Diabetes Atlas.’ 8th edn. (International Diabetes Federation: Brussels.)
Cordóva, A., Strobel, P., Vallejo, A., Valenzuela, P., Ulloa, O., Burgos, R. A., Menarim, B., Rodríguez-Gil, J. E., Ratto, M., and Ramírez-Reveco, A. (2014). Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5′ AMP-activated protein kinase (AMPK). Cryobiology 69, 473–481.
| Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5′ AMP-activated protein kinase (AMPK).Crossref | GoogleScholarGoogle Scholar |
Corominas-Faja, B., Quirantes-Pine, R., Oliveras-Ferraros, C., Vazquez-Martin, A., Cufi, S., Martin-Castillo, B., Micol, V., Joven, J., Segura-Carretero, A., and Menendez, J. A. (2012). Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging (Albany N.Y.) 4, 480–498.
| Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs.Crossref | GoogleScholarGoogle Scholar |
Coughlan, K. A., Valentine, R. J., Ruderman, N. B., and Saha, A. K. (2014). AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab. Syndr. Obes. 7, 241–253.
Dowling, R. J., Goodwin, P. J., and Stambolic, V. (2011). Understanding the benefit of metformin use in cancer treatment. BMC Med. 9, 33.
| Understanding the benefit of metformin use in cancer treatment.Crossref | GoogleScholarGoogle Scholar |
El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228.
| Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I.Crossref | GoogleScholarGoogle Scholar |
Ferreira, C., Sousa, M., Rabaca, A., Oliveira, P. F., Alves, M. G., and Sa, R. (2015). Impact of metformin on male reproduction. Curr. Pharm. Des. 21, 3621–3633.
| Impact of metformin on male reproduction.Crossref | GoogleScholarGoogle Scholar |
Hardie, D. G., and Alessi, D. R. (2013). LKB1 and AMPK and the cancer–metabolism link – ten years after. BMC Biol. 11, 36.
| LKB1 and AMPK and the cancer–metabolism link – ten years after.Crossref | GoogleScholarGoogle Scholar |
Hardie, D. G., and Ashford, M. L. (2014). AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29, 99–107.
| AMPK: regulating energy balance at the cellular and whole body levels.Crossref | GoogleScholarGoogle Scholar |
Hoek, J. B. (2006). Metformin and the fate of fat. Gastroenterology 130, 2234–2237.
| Metformin and the fate of fat.Crossref | GoogleScholarGoogle Scholar |
Hurtado de Llera, A., Martin-Hidalgo, D., Garcia-Marin, L. J., and Bragado, M. J. (2018). Metformin blocks mitochondrial membrane potential and inhibits sperm motility in fresh and refrigerated boar spermatozoa. Reprod. Domest. Anim. 53, 733–741.
| Metformin blocks mitochondrial membrane potential and inhibits sperm motility in fresh and refrigerated boar spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Kane, D. A., Anderson, E. J., Price, J. W., Woodlief, T. L., Lin, C. T., Bikman, B. T., Cortright, R. N., and Neufer, P. D. (2010). Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic. Biol. Med. 49, 1082–1087.
| Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats.Crossref | GoogleScholarGoogle Scholar |
Katila, N., Bhurtel, S., Shadfar, S., Srivastav, S., Neupane, S., Ojha, U., Jeong, G. S., and Choi, D. Y. (2017). Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 125, 396–407.
| Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease.Crossref | GoogleScholarGoogle Scholar |
Kim, J., Lee, J., Kim, C., Choi, J., and Kim, A. (2016). Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells. Tumour Biol. 37, 5811–5819.
| Anti-cancer effect of metformin by suppressing signaling pathway of HER2 and HER3 in tamoxifen-resistant breast cancer cells.Crossref | GoogleScholarGoogle Scholar |
Larsen, S., Rabol, R., Hansen, C. N., Madsbad, S., Helge, J. W., and Dela, F. (2012). Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration. Diabetologia 55, 443–449.
| Metformin-treated patients with type 2 diabetes have normal mitochondrial complex I respiration.Crossref | GoogleScholarGoogle Scholar |
Lehraiki, A., Abbe, P., Cerezo, M., Rouaud, F., Regazzetti, C., Chignon-Sicard, B., Passeron, T., Bertolotto, C., Ballotti, R., and Rocchi, S. (2014). Inhibition of melanogenesis by the antidiabetic metformin. J. Invest. Dermatol. 134, 2589–2597.
| Inhibition of melanogenesis by the antidiabetic metformin.Crossref | GoogleScholarGoogle Scholar |
Loubiere, C., Clavel, S., Gilleron, J., Harisseh, R., Fauconnier, J., Ben-Sahra, I., Kaminski, L., Laurent, K., Herkenne, S., Lacas-Gervais, S., Ambrosetti, D., Alcor, D., Rocchi, S., Cormont, M., Michiels, J. F., Mari, B., Mazure, N. M., Scorrano, L., Lacampagne, A., Gharib, A., Tanti, J. F., and Bost, F. (2017). The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells. Sci. Rep. 7, 5040.
| The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells.Crossref | GoogleScholarGoogle Scholar |
Martin-Montalvo, A., Mercken, E. M., Mitchell, S. J., Palacios, H. H., Mote, P. L., Scheibye-Knudsen, M., Gomes, A. P., Ward, T. M., Minor, R. K., Blouin, M. J., Schwab, M., Pollak, M., Zhang, Y., Yu, Y., Becker, K. G., Bohr, V. A., Ingram, D. K., Sinclair, D. A., Wolf, N. S., Spindler, S. R., Bernier, M., and de Cabo, R. (2013). Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192.
| Metformin improves healthspan and lifespan in mice.Crossref | GoogleScholarGoogle Scholar |
Miller, R. A., Chu, Q., Xie, J., Foretz, M., Viollet, B., and Birnbaum, M. J. (2013). Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260.
| Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP.Crossref | GoogleScholarGoogle Scholar |
Morgante, G., Tosti, C., Orvieto, R., Musacchio, M. C., Piomboni, P., and De Leo, V. (2011). Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome. Fertil. Steril. 95, 2150–2152.
| Metformin improves semen characteristics of oligo-terato-asthenozoospermic men with metabolic syndrome.Crossref | GoogleScholarGoogle Scholar |
Naglaa, Z. H. E., Hesham, A. M., Hosny, A. F., and Abdel Motal, S. M. (2010). Impact of metformin on immunity and male fertility in rabbits with alloxan-induced diabetes. J. Am. Sci. 6, 417–426.
Onken, B., and Driscoll, M. (2010). Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One 5, e8758.
| Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1.Crossref | GoogleScholarGoogle Scholar |
Owen, M. R., Doran, E., and Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614.
| Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.Crossref | GoogleScholarGoogle Scholar |
Palomba, S., Orio, F., Falbo, A., Russo, T., Tolino, A., and Zullo, F. (2006). Effects of metformin and clomiphene citrate on ovarian vascularity in patients with polycystic ovary syndrome. Fertil. Steril. 86, 1694–1701.
| Effects of metformin and clomiphene citrate on ovarian vascularity in patients with polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar |
Pernicova, I., and Korbonits, M. (2014). Metformin – mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156.
| Metformin – mode of action and clinical implications for diabetes and cancer.Crossref | GoogleScholarGoogle Scholar |
Price, T. J., and Dussor, G. (2013). AMPK: an emerging target for modification of injury-induced pain plasticity. Neurosci. Lett. 557, 9–18.
| AMPK: an emerging target for modification of injury-induced pain plasticity.Crossref | GoogleScholarGoogle Scholar |
Rosilio, C., Ben-Sahra, I., Bost, F., and Peyron, J. F. (2014). Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Lett. 346, 188–196.
| Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia.Crossref | GoogleScholarGoogle Scholar |
Saeedi, R., Parsons, H. L., Wambolt, R. B., Paulson, K., Sharma, V., Dyck, J. R., Brownsey, R. W., and Allard, M. F. (2008). Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms. Am. J. Physiol. Heart Circ. Physiol. 294, H2497–H2506.
| Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms.Crossref | GoogleScholarGoogle Scholar |
Scotland, S., Saland, E., Skuli, N., de Toni, F., Boutzen, H., Micklow, E., Senegas, I., Peyraud, R., Peyriga, L., Theodoro, F., et al. (2013). Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Leukemia 27, 2129–2138.
| Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells.Crossref | GoogleScholarGoogle Scholar |
Tartarin, P., Moison, D., Guibert, E., Dupont, J., Habert, R., Rouiller-Fabre, V., Frydman, N., Pozzi, S., Frydman, R., Lecureuil, C., and Froment, P. (2012). Metformin exposure affects human and mouse fetal testicular cells. Hum. Reprod. 27, 3304–3314.
| Metformin exposure affects human and mouse fetal testicular cells.Crossref | GoogleScholarGoogle Scholar |
Tavares, R. S., Escada-Rebelo, S., Silva, A. F., Sousa, M. I., Ramalho-Santos, J., and Amaral, S. (2018). Antidiabetic therapies and male reproductive function: where do we stand? Reproduction 155, R13–R37.
| Antidiabetic therapies and male reproductive function: where do we stand?Crossref | GoogleScholarGoogle Scholar |
World Health Organization (WHO) (2010). ‘WHO Laboratory Manual for the Examination and Processing of Human Semen.’ 5th edn. (WHO Press: Geneva.)
Yan, W. J., Mu, Y., Yu, N., Yi, T. L., Zhang, Y., Pang, X. L., Cheng, D., and Yang, J. (2015). Protective effects of metformin on reproductive function in obese male rats induced by high-fat diet. J. Assist. Reprod. Genet. 32, 1097–1104.
| Protective effects of metformin on reproductive function in obese male rats induced by high-fat diet.Crossref | GoogleScholarGoogle Scholar |
Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174.
| Role of AMP-activated protein kinase in mechanism of metformin action.Crossref | GoogleScholarGoogle Scholar |