Remodelling of mitochondria during spermiogenesis of Chinese soft-shelled turtle (Pelodiscus sinensis)
Abdul Haseeb A B , Hong Chen A , Yufei Huang A , Ping Yang A , Xuejing Sun A , Adeela Iqbal A , Nisar Ahmed A , Taozhi Wang A , Noor Samad Gandahi A , Xuebing Bai A and Qiusheng Chen A CA Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province 210095, China.
B Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan.
C Corresponding author. Email: chenqsh305@njau.edu.cn
Reproduction, Fertility and Development 30(11) 1514-1521 https://doi.org/10.1071/RD18010
Submitted: 8 January 2018 Accepted: 19 April 2018 Published: 15 May 2018
Abstract
Mitochondria are vital cellular organelles that have the ability to change their shape under different conditions, such as in response to stress, disease, changes in metabolic rate, energy requirements and apoptosis. In the present study, we observed remodelling of mitochondria during spermiogenesis and its relationship with mitochondria-associated granules (MAG). At the beginning of spermiogenesis, mitochondria are characterised by their round shape. As spermiogenesis progresses, the round-shaped mitochondria change into elongated and then swollen mitochondria, subsequently forming a crescent-like shape and finally developing into onion-like shaped mitochondria. We also noted changes in mitochondrial size, location and patterns of cristae at different stages of spermiogenesis. Significant differences (P < 0.0001) were found in the size of the different-shaped mitochondria. In early spermatids transitioning to the granular nucleus stage, the size of the mitochondria decreased, but increased subsequently during spermiogenesis. Changes in size and morphological variations were achieved through marked mitochondrial fusion. We also observed a non-membranous structure (MAG) closely associated with mitochondria that may stimulate or control fusion during mitochondrial remodelling. The end product of this sophisticated remodelling process in turtle spermatozoa is an onion-like mitochondrion. The acquisition of this kind of mitochondrial configuration is one strategy for long-term sperm storage in turtles.
Additional keywords: mitochondria associated granule, morphology, onion-like mitochondria, size, spermatids.
References
Al-Mehdi, A.-B., Pastukh, V. M., Swiger, B. M., Reed, D. J., Patel, M. R., Bardwell, G. C., Pastukh, V. V., Alexeyev, M. F., and Gillespie, M. N. (2012). Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci. Signal. 5, ra47.| Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription.Crossref | GoogleScholarGoogle Scholar |
Amaral, A., Lourenço, B., Marques, M., and Ramalho-Santos, J. (2013). Mitochondria functionality and sperm quality. Reproduction 146, R163–R174.
| Mitochondria functionality and sperm quality.Crossref | GoogleScholarGoogle Scholar |
André, J., and Rouiller, C. (1956). L’ultrastructure de la membrane nucléaire des ovocytes de l’araignée (Tegenaria domestica Clark). In ‘Proceedings of the European Conference on Electron Microscopy, Stockholm 1956’. (Eds F. Sjostrand, J. Rhodin.) pp. 162–164. (Academic Press: New York.)
Aravin, A. A., and Chan, D. C. (2011). piRNAs meet mitochondria. Dev. Cell 20, 287–288.
| piRNAs meet mitochondria.Crossref | GoogleScholarGoogle Scholar |
Bian, X., Gandahi, J. A., Liu, Y., Yang, P., Liu, Y., Zhang, L., Zhang, Q., and Chen, Q. (2013). The ultrastructural characteristics of the spermatozoa stored in the cauda epididymidis in Chinese soft-shelled turtle Pelodiscus sinensis during the breeding season. Micron 44, 202–209.
| The ultrastructural characteristics of the spermatozoa stored in the cauda epididymidis in Chinese soft-shelled turtle Pelodiscus sinensis during the breeding season.Crossref | GoogleScholarGoogle Scholar |
Chipuk, J. E., Bouchier-Hayes, L., and Green, D. (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 13, 1396–1402.
| Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario.Crossref | GoogleScholarGoogle Scholar |
Chocu, S., Calvel, P., Rolland, A. D., and Pineau, C. (2012). Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med 58, 179–190.
| Spermatogenesis in mammals: proteomic insights.Crossref | GoogleScholarGoogle Scholar |
Collins, T. J., Berridge, M. J., Lipp, P., and Bootman, M. D. (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21, 1616–1627.
| Mitochondria are morphologically and functionally heterogeneous within cells.Crossref | GoogleScholarGoogle Scholar |
Colombini, M. (2012). Mitochondrial outer membrane channels. Chem. Rev. 112, 6373–6387.
| Mitochondrial outer membrane channels.Crossref | GoogleScholarGoogle Scholar |
De los Rios Castillo, D., Zarco-Zavala, M., Olvera-Sanchez, S., Pardo, J. P., Juarez, O., Martinez, F., Mendoza-Hernandez, G., García-Trejo, J. J., and Flores-Herrera, O. (2011). Atypical cristae morphology of human syncytiotrophoblast mitochondria role for complex V. J. Biol. Chem. 286, 23911–23919.
| Atypical cristae morphology of human syncytiotrophoblast mitochondria role for complex V.Crossref | GoogleScholarGoogle Scholar |
De Martino, C., Floridi, A., Marcante, M., Malorni, W., Barcellona, P. S., Bellocci, M., and Silvestrini, B. (1979). Morphological, histochemical and biochemical studies on germ cell mitochondria of normal rats. Cell Tissue Res. 196, 1–22.
| Morphological, histochemical and biochemical studies on germ cell mitochondria of normal rats.Crossref | GoogleScholarGoogle Scholar |
Deheshi, S., Dabiri, B., Fan, S., Tsang, M., and Rintoul, G. L. (2015). Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ROS‐mediated remodeling. J. Neurochem. 133, 684–699.
| Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ROS‐mediated remodeling.Crossref | GoogleScholarGoogle Scholar |
Ding, W.-X., Li, M., Biazik, J. M., Morgan, D. G., Guo, F., Ni, H.-M., Goheen, M., Eskelinen, E.-L., and Yin, X.-M. (2012). Electron microscopic analysis of a spherical mitochondrial structure. J. Biol. Chem. 287, 42373–42378.
| Electron microscopic analysis of a spherical mitochondrial structure.Crossref | GoogleScholarGoogle Scholar |
Fabian, L., and Brill, J. A. (2012). Drosophila spermiogenesis: big things come from little packages. Spermatogenesis 2, 197–212.
| Drosophila spermiogenesis: big things come from little packages.Crossref | GoogleScholarGoogle Scholar |
Ghadially, F. N. (2013). ‘Ultrastructural Pathology of the Cell and Matrix: A Text and Atlas of Physiological and Pathological Alterations in the Fine Structure of Cellular and Extracellular Components. Volume 2.’ (Butterworths: London.)
Gribbins, K. (2011). Reptilian spermatogenesis: a histological and ultrastructural perspective. Spermatogenesis 1, 250–269.
| Reptilian spermatogenesis: a histological and ultrastructural perspective.Crossref | GoogleScholarGoogle Scholar |
Gribbins, K. M., Gist, D. H., and Congdon, J. D. (2003). Cytological evaluation of spermatogenesis and organization of the germinal epithelium in the male slider turtle, Trachemys scripta. J. Morphol. 255, 337–346.
| Cytological evaluation of spermatogenesis and organization of the germinal epithelium in the male slider turtle, Trachemys scripta.Crossref | GoogleScholarGoogle Scholar |
Hajnóczky, G., Hager, R., and Thomas, A. P. (1999). Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+. J. Biol. Chem. 274, 14157–14162.
| Mitochondria suppress local feedback activation of inositol 1,4,5-trisphosphate receptors by Ca2+.Crossref | GoogleScholarGoogle Scholar |
Hess, R. A., Thurston, R. J., and Gist, D. H. (1991). Ultrastructure of the turtle spermatozoon. Anat. Rec. 229, 473–481.
| Ultrastructure of the turtle spermatozoon.Crossref | GoogleScholarGoogle Scholar |
Huang, H., Gao, Q., Peng, X., Choi, S.-Y., Sarma, K., Ren, H., Morris, A. J., and Frohman, M. A. (2011). piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20, 376–387.
| piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling.Crossref | GoogleScholarGoogle Scholar |
Isaeva, V., and Reunov, A. (2001). Germ plasm and germ-line cell determination: the role of mitochondria. Russ. J. Mar. Biol. 27, S8–S14.
| Germ plasm and germ-line cell determination: the role of mitochondria.Crossref | GoogleScholarGoogle Scholar |
John, G. B., Shang, Y., Li, L., Renken, C., Mannella, C. A., Selker, J. M., Rangell, L., Bennett, M. J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16, 1543–1554.
| The mitochondrial inner membrane protein mitofilin controls cristae morphology.Crossref | GoogleScholarGoogle Scholar |
Li, L., Qin, Y., and Huang, B. (2005). Technological study on sperm storage. J Anhui Agric Sci 33, 455–459.
McCarron, J. G., Wilson, C., Sandison, M. E., Olson, M. L., Girkin, J. M., Saunter, C., and Chalmers, S. (2013). From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J. Vasc. Res. 50, 357–371.
| From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle.Crossref | GoogleScholarGoogle Scholar |
Meinhardt, A., Wilhelm, B., and Seitz, J. (1999). Mini symposium. New aspects of spermatogenesis. Expression of mitochondrial marker proteins during spermatogenesis. Hum. Reprod. Update 5, 108–119.
| Mini symposium. New aspects of spermatogenesis. Expression of mitochondrial marker proteins during spermatogenesis.Crossref | GoogleScholarGoogle Scholar |
Meylan, P. A., Schuler, R., and Moler, P. (2002). Spermatogenic cycle of the Florida softshell turtle, Apalone ferox. Copeia , 779–786.
| Spermatogenic cycle of the Florida softshell turtle, Apalone ferox.Crossref | GoogleScholarGoogle Scholar |
Olukole, S. G., Madekurozwa, M.-C., and Oke, B. O. (2017). Spermiogenesis in the African sideneck turtle (Pelusios castaneus): acrosomal vesicle formation and nuclear morphogenesis. Journal of King Saud University-Science , .
| Spermiogenesis in the African sideneck turtle (Pelusios castaneus): acrosomal vesicle formation and nuclear morphogenesis.Crossref | GoogleScholarGoogle Scholar |
Onohara, Y., and Yokota, S. (2012a). Expression of DDX25 in nuage components of mammalian spermatogenic cells: immunofluorescence and immunoelectron microscopic study. Histochem. Cell Biol. 137, 37–51.
| Expression of DDX25 in nuage components of mammalian spermatogenic cells: immunofluorescence and immunoelectron microscopic study.Crossref | GoogleScholarGoogle Scholar |
Onohara, Y., and Yokota, S. (2012b). Nuage components and their contents in mammalian spermatogenic cells, as revealed by immunoelectron microscopy. In ‘Meiosis – Molecular Mechanisms and Cytogenetic Diversity’. (Intechopen.) pp. 217–240. (Intech.)
Park, M. K., Ashby, M. C., Erdemli, G., Petersen, O. H., and Tepikin, A. V. (2001). Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J. 20, 1863–1874.
| Perinuclear, perigranular and sub‐plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport.Crossref | GoogleScholarGoogle Scholar |
Pernas, L., and Scorrano, L. (2016). Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78, 505–531.
| Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function.Crossref | GoogleScholarGoogle Scholar |
Rajender, S., Rahul, P., and Mahdi, A. A. (2010). Mitochondria, spermatogenesis and male infertility. Mitochondrion 10, 419–428.
| Mitochondria, spermatogenesis and male infertility.Crossref | GoogleScholarGoogle Scholar |
Ramalho-Santos, J., and Amaral, S. (2013). Mitochondria and mammalian reproduction. Mol. Cell. Endocrinol. 379, 74–84.
| Mitochondria and mammalian reproduction.Crossref | GoogleScholarGoogle Scholar |
Reunov, A., Isaeva, V., Au, D., and Wu, R. (2000). Nuage constituents arising from mitochondria: is it possible? Dev. Growth Differ. 42, 139–143.
| Nuage constituents arising from mitochondria: is it possible?Crossref | GoogleScholarGoogle Scholar |
Russell, L., and Frank, B. (1978). Ultrastructural characterization of nuage in spermatocytes of the rat testis. Anat. Rec. 190, 79–97.
| Ultrastructural characterization of nuage in spermatocytes of the rat testis.Crossref | GoogleScholarGoogle Scholar |
Scheffler, I. (2008). ‘Mitochondria.’ 2nd edn. (Wiley and Sons: Hoboken.)
Choi, S.-Y., Huang, P., Jenkins, G. M., Chan, D. C., Schiller, J., and Frohman, M. A. (2006). A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 1255.
| A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis.Crossref | GoogleScholarGoogle Scholar |
Sun, X., and Yang, W.-X. (2010). Mitochondria: transportation, distribution and function during spermiogenesis. Adv. Biosci. Biotechnol. 1, 97.
| Mitochondria: transportation, distribution and function during spermiogenesis.Crossref | GoogleScholarGoogle Scholar |
Szabadkai, G., Simoni, A. M., Chami, M., Wieckowski, M. R., Youle, R. J., and Rizzuto, R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell 16, 59–68.
| Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis.Crossref | GoogleScholarGoogle Scholar |
Takebe, M., Onohara, Y., and Yokota, S. (2013). Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI. Histochem. Cell Biol. 140, 169–181.
| Expression of MAEL in nuage and non-nuage compartments of rat spermatogenic cells and colocalization with DDX4, DDX25 and MIWI.Crossref | GoogleScholarGoogle Scholar |
Takimoto, E., and Kass, D. A. (2007). Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49, 241–248.
| Role of oxidative stress in cardiac hypertrophy and remodeling.Crossref | GoogleScholarGoogle Scholar |
Viana, D. C., dos Santos, A. C., and de Assis Neto, A. C. (2015). Spermiogenesis in scorpion mud turtle, Kinosternon scorpioides. Rev. Bras. Med. Vet. 4, 389–396.
Vincent, A. E., Ng, Y. S., White, K., Davey, T., Mannella, C., Falkous, G., Feeney, C., Schaefer, A. M., McFarland, R., and Gorman, G. S. (2016). The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci. Rep. 6, 30610.
| The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy.Crossref | GoogleScholarGoogle Scholar |
Watanabe, T., Chuma, S., Yamamoto, Y., Kuramochi-Miyagawa, S., Totoki, Y., Toyoda, A., Hoki, Y., Fujiyama, A., Shibata, T., and Sado, T. (2011). MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev. Cell 20, 364–375.
| MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline.Crossref | GoogleScholarGoogle Scholar |
Xiangkun, H., Li, Z., Meiying, L., Huijun, B., Nainan, H., and Qiusheng, C. (2008). Seasonal changes of sperm storage and correlative structures in male and female soft-shelled turtles, Trionyx sinensis. Anim. Reprod. Sci. 108, 435–445.
| Seasonal changes of sperm storage and correlative structures in male and female soft-shelled turtles, Trionyx sinensis.Crossref | GoogleScholarGoogle Scholar |
Yokota, S. (2012). Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy. Histochem. Cell Biol. 138, 1–11.
| Nuage proteins: their localization in subcellular structures of spermatogenic cells as revealed by immunoelectron microscopy.Crossref | GoogleScholarGoogle Scholar |
Zhang, L., Han, X. K., Li, M. Y., Bao, H. J., and Chen, Q. S. (2007). Spermiogenesis in soft‐shelled turtle, Pelodiscus sinensis. Anat. Rec. 290, 1213–1222.
| Spermiogenesis in soft‐shelled turtle, Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar |
Zhang, L., Yang, P., Bian, X., Zhang, Q., Ullah, S., Waqas, Y., Chen, X., Liu, Y., Chen, W., and Le, Y. (2015). Modification of sperm morphology during long-term sperm storage in the reproductive tract of the Chinese soft-shelled turtle, Pelodiscus sinensis. Sci. Rep. 5, 16096.
Zick, M., Rabl, R., and Reichert, A. S. (2009). Cristae formation – linking ultrastructure and function of mitochondria. Biochim. Biophys. Acta 1793, 5–19.