Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dynamic changes in the global transcriptome of bovine germinal vesicle oocytes after vitrification followed by in vitro maturation

Jianwei Huang A , YongShun Ma A B , Shao Wei A , Bo Pan B , Yu Qi A , YunPeng Hou C , QingYong Meng C , GuangBin Zhou B D and HongBing Han A D
+ Author Affiliations
- Author Affiliations

A Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China.

B Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China.

C State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China.

D Corresponding authors. Emails: hanhongbing@cau.edu.cn; zguangbin@sicau.edu.cn

Reproduction, Fertility and Development 30(10) 1298-1313 https://doi.org/10.1071/RD17535
Submitted: 24 October 2017  Accepted: 13 March 2018   Published: 17 April 2018

Abstract

This study was conducted to investigate the effect of vitrification on the dynamics of the global transcriptome in bovine germinal vesicle (GV) oocytes and their in vitro-derived metaphase II (MII) oocytes. The GV oocytes were vitrified using the open-pulled straw method. After warming, GV oocytes and the resulting MII-stage oocytes were cultured in vitro for 2 h and 24 h respectively and were then collected. The fresh GV oocytes and their in vitro-derived MII oocytes were used as controls. Then, each pool (fresh GV, n = 3; vitrified GV, n = 4; fresh MII, n = 1 and MII derived from vitrified GV, n = 2) from the different stages was used for mRNA transcriptome sequencing. The results showed that the in vitro maturation rates of GV oocytes were significantly decreased (32.36% vs 53.14%) after vitrification. Bovine GV oocyte vitrification leads to 12 significantly upregulated and 19 downregulated genes. After culturing in vitro, the vitrification-derived MII oocytes showed 47 significantly upregulated and six downregulated genes when compared with those from fresh GV oocytes. Based on molecular function–gene ontology terms analysis and the Kyoto encyclopaedia of genes (KEGG) pathway database, the differentially expressed genes were associated with the pathways of cell differentiation and mitosis, transcription regulation, regulation of actin cytoskeleton, apoptosis and so on, which potentially result in the lower in vitro development of GV bovine oocytes.

Additional keywords: cattle, differentially expressed genes, egg freezing, GV oocytes, oocyte developmental potential.


References

Anchamparuthy, V. M., Pearson, R. E., and Gwazdauskas, F. C. (2010). Expression pattern of apoptotic genes in vitrified–thawed bovine oocytes. Reprod. Domest. Anim. 45, e83–e90.
| 1:CAS:528:DC%2BC3cXhtlSgtb7J&md5=a488aa33d6d9c8ea880ae4e80bf2b51dCAS |

Azari, M., Kafi, M., Ebrahimi, B., Fatehi, R., and Jamalzadeh, M. (2017). Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus–oocyte complexes vitrification. Vet. Res. Commun. 41, 49–56.
Oocyte maturation, embryo development and gene expression following two different methods of bovine cumulus–oocyte complexes vitrification.Crossref | GoogleScholarGoogle Scholar |

Chamayou, S., Bonaventura, G., Alecci, C., Tibullo, D., Di Raimondo, F., Guglielmino, A., and Barcellona, M. L. (2011). Consequences of metaphase II oocyte cryopreservation on mRNA content. Cryobiology 62, 130–134.
Consequences of metaphase II oocyte cryopreservation on mRNA content.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Cmu7s%3D&md5=76b4ec21fbd3644221d80db4a4d0263fCAS |

Chang, C. C., Sung, L. Y., Tian, C. X., Yang, X., Kort, H. I., and Nagy, Z. P. (2007). Parallel comparison of parthenogenetic development following oocyte cryopreservation vitrification vs. slow freezing. Fertil. Steril. 88, S350.
Parallel comparison of parthenogenetic development following oocyte cryopreservation vitrification vs. slow freezing.Crossref | GoogleScholarGoogle Scholar |

Chen, J. Y., Li, X. X., Xu, Y. K., Wu, H., Zheng, J. J., and Yu, X. L. (2014). Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine. Cryobiology 69, 428–433.
Developmental competence and gene expression of immature oocytes following liquid helium vitrification in bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGrsLzK&md5=a617b73685968c7a0642e677cca512d4CAS |

Chian, R. C., Xu, Y., and Keilty, D. (2017). Chapter 3. Current challenges in immature oocyte cryopreservation. Methods Mol. Biol. 1568, 33–44.
Chapter 3. Current challenges in immature oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Dorji, , Ohkubo, Y., Miyoshi, K., and Yoshida, M. (2012). Gene expression differences in oocytes derived from adult and prepubertal Japanese Black cattle during in vitro maturation. Reprod. Domest. Anim. 47, 392–402.
Gene expression differences in oocytes derived from adult and prepubertal Japanese Black cattle during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVKmt7c%3D&md5=ca4c22581d23464c2259b90d805f3097CAS |

Eroglu, A., Toth, T. L., and Toner, M. (1998). Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil. Steril. 69, 944–957.
Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3lt1Wrsw%3D%3D&md5=ae199df6faa63421941a5b62197be5b5CAS |

Fair, T., Carter, F., Park, S., Evans, A. C., and Lonergan, P. (2007). Global gene expression analysis during bovine oocyte in vitro maturation. Theriogenology 68, S91–S97.
Global gene expression analysis during bovine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiu74%3D&md5=53985cbc7e12b5f1081fd167c1475c24CAS |

Glujovsky, D., Riestra, B., Sueldo, C., Fiszbajn, G., Repping, S., Nodar, F., Papier, S., and Ciapponi, A. (2014). Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst. Rev. (9) , CD010047.

Gokce, O., Stanley, G. M., Treutlein, B., Neff, N. F., Camp, J. G., Malenka, R. C., Rothwell, P. E., Fuccillo, M. V., Sudhof, T. C., and Quake, S. R. (2016). Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Reports 16, 1126–1137.
Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFyiurzL&md5=5972a000b01e1005f2ca9352950c17f3CAS |

Guillaumet-Adkins, A., Rodriguez-Esteban, G., Mereu, E., Mendez-Lago, M., Jaitin, D. A., Villanueva, A., Vidal, A., Martinez-Marti, A., Felip, E., Vivancos, A., Keren-Shaul, H., Heath, S., Gut, M., Amit, I., Gut, I., and Heyn, H. (2017). Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol. 18, 45.
Single-cell transcriptome conservation in cryopreserved cells and tissues.Crossref | GoogleScholarGoogle Scholar |

Hou, Y. P., Dai, Y. P., Zhu, S. E., Zhu, H. B., Wu, T. Y., Gong, G. C., Wang, H. P., Wang, L. L., Liu, Y., Li, R., Wan, R., and Li, N. (2005). Bovine oocytes vitrified by the open-pulled straw method and used for somatic cell cloning supported development to term. Theriogenology 64, 1381–1391.
Bovine oocytes vitrified by the open-pulled straw method and used for somatic cell cloning supported development to term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslyjtro%3D&md5=5df287b1de490a57467ec4a7f298d2eaCAS |

Jang, W. I., Lee, S. E., Choi, H. Y., Lim, J. G., Heo, Y. T., Cui, X. S., and Kim, N. H. (2014). Vitrification of immature mouse oocytes by the modified-cut standard straw method. Cell Biol. Int. 38, 164–171.
Vitrification of immature mouse oocytes by the modified-cut standard straw method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsFGqsQ%3D%3D&md5=61bafa3ea869358ac3f215916c731ae3CAS |

Katz-Jaffe, M. G., McCallie, B. R., Preis, K. A., Filipovits, J., and Gardner, D. K. (2009). Transcriptome analysis of in vivo and in vitro-matured bovine MII oocytes. Theriogenology 71, 939–946.
Transcriptome analysis of in vivo and in vitro-matured bovine MII oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWltLg%3D&md5=a5b2dfec2ff6aeaec53c17ae2efe8f07CAS |

Leal, C. L., Mamo, S., Fair, T., and Lonergan, P. (2012). Gene expression in bovine oocytes and cumulus cells after meiotic inhibition with the cyclin-dependent kinase inhibitor butyrolactone I. Reprod. Domest. Anim. 47, 615–624.
Gene expression in bovine oocytes and cumulus cells after meiotic inhibition with the cyclin-dependent kinase inhibitor butyrolactone I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKjurrK&md5=51b49d541ccc54428d8276fca4d4bf2fCAS |

Mamo, S., Carter, F., Lonergan, P., Leal, C. L., Al Naib, A., McGettigan, P., Mehta, J. P., Evans, A. C., and Fair, T. (2011). Sequential analysis of global gene expression profiles in immature and in vitro-matured bovine oocytes: potential molecular markers of oocyte maturation. BMC Genomics 12, 151.
Sequential analysis of global gene expression profiles in immature and in vitro-matured bovine oocytes: potential molecular markers of oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVWisLw%3D&md5=d750ed0fb0f6f82740c85bb3b0e2901fCAS |

Misirlioglu, M., Page, G. P., Sagirkaya, H., Kaya, A., Parrish, J. J., First, N. L., and Memili, E. (2006). Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc. Natl. Acad. Sci. USA 103, 18905–18910.
Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChu77M&md5=1eb6976e90199907bfc3e757a1586447CAS |

Mullen, S. F., and Fahy, G. M. (2012). A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep. Theriogenology 78, 1709–1719.
A chronologic review of mature oocyte vitrification research in cattle, pigs, and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnsL7K&md5=461670d761509910f4a5274eef37bdbbCAS |

Nguyen, V. H., Nguyen, V. L., Hoang, N. S., and Do, T. K. (2016). Effect of cell membrane permeability protein on porcine oocyte vitrification. Cryo Letters 37, 103–109.
| 1:STN:280:DC%2BC2s%2FjslCmtg%3D%3D&md5=1f2787202ed25bbe66ef4e52c84fbdd8CAS |

Niu, H. R., Zi, X. D., Xiao, X., Xiong, X. R., Zhong, J. C., Li, J., Wang, L., and Wang, Y. (2014). Cloning of cDNAs for H1F0, TOP1, CLTA and CDK1 and the effects of cryopreservation on the expression of their mRNA transcripts in yak (Bos grunniens) oocytes. Cryobiology 69, 55–60.
Cloning of cDNAs for H1F0, TOP1, CLTA and CDK1 and the effects of cryopreservation on the expression of their mRNA transcripts in yak (Bos grunniens) oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFGjtb8%3D&md5=eba3f23abd431297f443666f425a9003CAS |

Nohalez, A., Martinez, C. A., Gil, M. A., Alminana, C., Roca, J., Martinez, E. A., and Cuello, C. (2015). Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes. Theriogenology 84, 545–552.
Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVSgtb8%3D&md5=3ccbece387a3c807332e97178784149cCAS |

Paynter, S. J., Cooper, A., Gregory, L., Fuller, B. J., and Shaw, R. W. (1999). Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum. Reprod. 14, 2338–2342.
Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1yqsL8%3D&md5=72616005a241c557275e46a985877baaCAS |

Picelli, S., Bjorklund, A. K., Faridani, O. R., Sagasser, S., Winberg, G., and Sandberg, R. (2013). Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098.
Smart-seq2 for sensitive full-length transcriptome profiling in single cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyqtb%2FM&md5=b3502e2a9c77be44e57a520946bad958CAS |

Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S., and Sandberg, R. (2014). Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181.
Full-length RNA-seq from single cells using Smart-seq2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ejtrc%3D&md5=8efe0e61c1347ebb21641f1e11d493b8CAS |

Punyawai, K., Anakkul, N., Srirattana, K., Aikawa, Y., Sangsritavong, S., Nagai, T., Imai, K., and Parnpai, R. (2015). Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 61, 431–437.
Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFCksLc%3D&md5=75a31ad03621f916d5b61a160e1891bdCAS |

Rao, B. S., Mahesh, Y. U., Charan, K. V., Suman, K., Sekhar, N., and Shivaji, S. (2012). Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes. Cryobiology 64, 176–184.
Effect of vitrification on meiotic maturation and expression of genes in immature goat cumulus oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1Kqt70%3D&md5=50151ce5d97a7e158c3dabc25c352717CAS |

Reinius, B., Mold, J. E., Ramskold, D., Deng, Q., Johnsson, P., Michaelsson, J., Frisen, J., and Sandberg, R. (2016). Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat. Genet. 48, 1430–1435.
Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1SltLzE&md5=ce7ead1d44aa29df97490b169b79d6cfCAS |

Shi, W. Q., Zhu, S. E., Zhang, D., Wang, W. H., Tang, G. L., Hou, Y. P., and Tian, S. J. (2006). Improved development by Taxol pretreatment after vitrification of in vitro-matured porcine oocytes. Reproduction 131, 795–804.
Improved development by Taxol pretreatment after vitrification of in vitro-matured porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jt7s%3D&md5=0115cf7530d3108e0819cad9a27d8dabCAS |

Shirazi, A., Naderi, M. M., Hassanpour, H., Heidari, M., Borjian, S., Sarvari, A., and Akhondi, M. M. (2016). The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology 86, 2136–2146.
The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ygs7jL&md5=117ac700eab82f4b2b17a6f9d9da14cbCAS |

Sprícigo, J. F. W., Morais, K., Ferreira, A. R., Machado, G. M., Gomes, A. C. M., Rumpf, R., Franco, M. M., and Dode, M. A. N. (2014). Vitrification of bovine oocytes at different meiotic stages using the Cryotop method: assessment of morphological, molecular and functional patterns. Cryobiology 69, 256–265.
Vitrification of bovine oocytes at different meiotic stages using the Cryotop method: assessment of morphological, molecular and functional patterns.Crossref | GoogleScholarGoogle Scholar |

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.
An integrated encyclopedia of DNA elements in the human genome.Crossref | GoogleScholarGoogle Scholar |

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578.
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Cjsrc%3D&md5=9f65a8604129a2d83a31d17ee9bef213CAS |

Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70.
Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes.Crossref | GoogleScholarGoogle Scholar |

Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., and Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev. 51, 53–58.
Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7g%3D&md5=cbadfbd9f46ac94db584d07cbfed6db0CAS |

Vieira, A. D., Mezzalira, A., Barbieri, D. P., Lehmkuhl, R. C., Rubin, M. I., and Vajta, G. (2002). Calves born after open pulled straw vitrification of immature bovine oocytes. Cryobiology 45, 91–94.
Calves born after open pulled straw vitrification of immature bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslSmsrs%3D&md5=6f179f54d837d2eefaabbc2e6f68db7bCAS |

Vieira, A. D., Forell, F., Feltrin, C., and Rodrigues, J. L. (2008). Calves born after direct transfer of vitrified bovine in vitro-produced blastocysts derived from vitrified immature oocytes. Reprod. Domest. Anim. 43, 314–318.
Calves born after direct transfer of vitrified bovine in vitro-produced blastocysts derived from vitrified immature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czgtFKgtQ%3D%3D&md5=59c03e085200606703f305ce496d81b9CAS |

Wang, N., Li, C. Y., Zhu, H. B., Hao, H. S., Wang, H. Y., Yan, C. L., Zhao, S. J., Du, W. H., Wang, D., Liu, Y., Pang, Y. W., and Zhao, X. M. (2017). Effect of vitrification on the mRNA transcriptome of bovine oocytes. Reprod. Domest. Anim. 52, 531–541.
Effect of vitrification on the mRNA transcriptome of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFCktb%2FF&md5=c08aa5c55a2bdd026aef6bf3412ffbbeCAS |

Wen, Y., Quintero, R. B., Shu, Y., Polan, M., and Behr, B. (2007). Expression of CD9 in frozen–thawed mouse oocytes: preliminary experience. Fertil. Steril. 88, 526–529.
Expression of CD9 in frozen–thawed mouse oocytes: preliminary experience.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVentb7F&md5=29d1638417d479b0a890c0192924cc1cCAS |

Wrenzycki, C., Herrmann, D., and Niemann, H. (2007). Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology 68, S77–S83.
Messenger RNA in oocytes and embryos in relation to embryo viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiurk%3D&md5=c40f88ce5a310da5d1484620e3bc001fCAS |

Wu, H., Yu, X. L., Guo, X. F., Zhang, F., Pei, X. Z., Li, X. X., Han, W. X., and Li, Y. H. (2017). Effect of liquid helium vitrification on the ultrastructure and related gene expression of mature bovine oocytes after vitrifying at immature stage. Theriogenology 87, 91–99.
Effect of liquid helium vitrification on the ultrastructure and related gene expression of mature bovine oocytes after vitrifying at immature stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVels7vE&md5=171ce1cfe3b158c73c2e5004141e7a61CAS |

Xu, D., Sharma, C., and Hemler, M. E. (2009). Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J. 23, 3674–3681.
Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlymtr%2FM&md5=7845c415c198412d8534b14ff7d649a3CAS |

Yan, C. L., Fu, X. W., Zhou, G. B., Zhao, X. M., Suo, L., and Zhu, S. E. (2010). Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol pretreatment and relationship to competence. Fertil. Steril. 93, 959–966.
Mitochondrial behaviors in the vitrified mouse oocyte and its parthenogenetic embryo: effect of Taxol pretreatment and relationship to competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFems7w%3D&md5=3a04e8500b4669df25077c0032880b9bCAS |

Zhang, Y., Li, W., Ma, Y., Wang, D., Zhao, X., Zeng, C., Zhang, M., Zeng, X., Meng, Q., and Zhou, G. (2016). Improved development by melatonin treatment after vitrification of mouse metaphase II oocytes. Cryobiology 73, 335–342.
Improved development by melatonin treatment after vitrification of mouse metaphase II oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslSns73P&md5=fd23a0a9fc9882310d0ae7e527e8bc55CAS |

Zhou, G. B., and Li, N. (2013). Bovine oocytes cryoinjury and how to improve their development following cryopreservation. Anim. Biotechnol. 24, 94–106.
Bovine oocytes cryoinjury and how to improve their development following cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Zhou, G. B., Zeng, Y., Meng, Q. G., Liu, Y., Dai, Y. P., Zhu, S. E., Bunch, T. D., and Hou, Y. P. (2013). Decreased expression of CD9 in bovine oocytes after cryopreservation and the relationship to fertilization capacity. Mol. Reprod. Dev. 80, 451–459.
| 1:CAS:528:DC%2BC3sXnvFShsLY%3D&md5=5262015570456fc517c015c20f1d7b78CAS |