Negative effects of oxidative stress in bovine spermatozoa on in vitro development and DNA integrity of embryos
L. Bittner A E , S. Wyck B , C. Herrera B , M. Siuda B , C. Wrenzycki C , B. van Loon D and H. Bollwein BA Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
B Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zuerich, Switzerland.
C Clinic for Veterinary Obstetrics, Gynecology and Andrology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, Frankfurter Str. 94, 35392 Gießen, Germany.
D Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Prinsesse Kristinasgt. 1, 7030 Trondheim, Norway.
E Corresponding author. Email: lillibittner@uni-leipzig.de
Reproduction, Fertility and Development 30(10) 1359-1368 https://doi.org/10.1071/RD17533
Submitted: 29 May 2017 Accepted: 22 March 2018 Published: 1 May 2018
Abstract
Oxidative stress in spermatozoa has effects on subsequent embryo development. The aim of the present study was to elucidate whether sperm oxidative stress results in increased DNA damage in the embryo. To this end, bovine spermatozoa were incubated for 1 h at 37°C without or with 100 µM H2O2, resulting in non-oxidised (NOX-S) and oxidised (OX-S) spermatozoa respectively. Non-incubated spermatozoa served as the control group (CON-S). After IVF, developmental rates 30, 46 and 60 h and 7 days after IVF were assessed. DNA damage was analysed in embryos using the comet assay and a DNA damage marker (γH2AX immunostaining); the apoptotic index was determined in blastocysts. Exposure of spermatozoa to H2O2 induced a significant amount of sperm chromatin damage. The use of OX-S in IVF resulted in significantly reduced cleavage and blastocyst rates compared with the use of CON-S and NOX-S. Furthermore, in embryos resulting from the use of OX-S, a developmental delay was evident 30 and 46 h after IVF. γH2AX immunostaining was lower in blastocysts than in early embryos. In blastocysts, the comet and apoptotic indices were significantly higher in embryos resulting from the use of OX-S than CON-S and NOX-S. In conclusion, oxidative stress in spermatozoa induces developmental abnormalities and is a source of DNA damage in the resulting embryos.
Additional keywords: comet assay, early cleavage, embryo development, γH2AX, hydrogen peroxide.
References
Adiga, S. K., Toyoshima, M., Shiraishi, K., Shimura, T., Takeda, J., Taga, M., Nagai, H., Kumar, P., and Niwa, O. (2007). p21 provides stage specific DNA damage control to preimplantation embryos. Oncogene 26, 6141–6149.| p21 provides stage specific DNA damage control to preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeisLjO&md5=76c2741d502eed1aff0390e2ad1c43afCAS |
Aitken, R. J., and Baker, M. (2006). Oxidative stress, sperm survival and fertility control. Mol. Cell. Endocrinol. 250, 66–69.
| Oxidative stress, sperm survival and fertility control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjtrc%3D&md5=5a1e2c8e6c0ff26cb4ddf790dd0f6a6eCAS |
Aitken, R. J., Clarkson, J., and Fishel, S. (1989). Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41, 183–197.
| Generation of reactive oxygen species, lipid peroxidation, and human sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslWksLs%3D&md5=9f21de352fe0d6d41b264ac227f2128eCAS |
Aitken, R. J., De Iuliis, G. N., and McLachlan, R. I. (2009). Biological and clinical significance of DNA damage in the male germ line. Int. J. Androl. 32, 46–56.
| Biological and clinical significance of DNA damage in the male germ line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWgsLo%3D&md5=a603bc6e5c1c0321f192edf1f357d11dCAS |
Aitken, R. J., Gibb, Z., Baker, M. A., Drevet, J., and Gharagozloo, P. (2016). Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28, 1–10.
| Causes and consequences of oxidative stress in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvF2itLzF&md5=ef9211b621294cd3ec66a27447b4dcb6CAS |
Anderiesz, C., Ferraretti, A., and Magli, C. (2000). Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro. Hum. Reprod. 15, 1140–1148.
| Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVWit7Y%3D&md5=3dd68fc88d660323b3aa8f7179599df8CAS |
Ashwood-Smith, M. J., and Edwards, R. G. (1996). Genetics and human conception DNA repair by oocytes. Mol. Hum. Reprod. 2, 46–51.
| Genetics and human conception DNA repair by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFyntL4%3D&md5=9ba7611a7f22b6571dd0f626a18826a7CAS |
Bain, N. T., Madan, P., and Betts, D. H. (2011). The early embryo response to intracellular reactive oxygen species is developmentally regulated. Reprod. Fertil. Dev. 23, 561–575.
| The early embryo response to intracellular reactive oxygen species is developmentally regulated.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFKnsLY%3D&md5=1c9522b27a8f78bc304d865653ab3905CAS |
Banáth, J. P., MacPhail, S. H., and Olive, P. L. (2004). Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res. 64, 7144–7149.
| Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines.Crossref | GoogleScholarGoogle Scholar |
Barzilai, A., and Yamamoto, K. I. (2004). DNA damage responses to oxidative stress. DNA Repair (Amst.) 3, 1109–1115.
| DNA damage responses to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeqtL0%3D&md5=028edd65e269662bdee571b0498daa8eCAS |
Bettegowda, A., Lee, K., and Smith, G. (2008). Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition. Reprod. Fertil. Dev. 20, 45–53.
| Cytoplasmic and nuclear determinants of the maternal-to-embryonic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7Y%3D&md5=219f8d1a2dbf8e97b297a10e729972faCAS |
Beyhan, Z., Johnson, L., and First, N. (1999). Sexual dimorphism in IVM-IVF bovine embryos produced from X and Y chromosome-bearing spermatozoa sorted by high speed flow cytometry. Theriogenology 52, 35–48.
| Sexual dimorphism in IVM-IVF bovine embryos produced from X and Y chromosome-bearing spermatozoa sorted by high speed flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGkuw%3D%3D&md5=57c93f4ba920f318c16b7d7c0e56a9f0CAS |
Brandriff, B., and Pedersen, R. (1981). Repair of the ultraviolet-irradiated male genome in fertilized mouse eggs. Science 211, 1431–1433.
| Repair of the ultraviolet-irradiated male genome in fertilized mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFCjtbw%3D&md5=de8289b802b8d4d8ac3c8542c057351aCAS |
Burruel, V., Klooster, K. L., Chitwood, J., Ross, P. J., and Meyers, S. (2013). Oxidative damage to rhesus macaque spermatozoa results in mitotic arrest and transcript abundance changes in early embryos. Biol. Reprod. 89, 72.
| Oxidative damage to rhesus macaque spermatozoa results in mitotic arrest and transcript abundance changes in early embryos.Crossref | GoogleScholarGoogle Scholar |
Burruel, V., Klooster, K. L., Barker, C. M., Pera, R. R., and Meyers, S. (2014). Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci. Rep. 4, 6598.
| Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVyhsbY%3D&md5=e8b96752da95b67e6786cdc79e418277CAS |
Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97–105.
| Analysis of apoptosis in the preimplantation bovine embryo using TUNEL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlalt7k%3D&md5=9b356e3842d6c9b825a4999474d31e4fCAS |
Celeste, A., Fernandez-Capetillo, O., Pilch, D. R., Staudt, D. W., Lee, A., Bonner, R. F., Bonner, W. M., and Nussenzweig, A. (2003). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5, 675–679.
| Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFeru7k%3D&md5=3e8a5717685eb723c365560ad389c848CAS |
de Castro, L. S., De Assis, P. M., Siqueira, A. F., Hamilton, T. R., Mendes, C. M., Losano, J. D., Nichi, M., Visintin, J. A., and Assumpção, M. E. (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxid. Med. Cell. Longev. 2016, 8213071.
| Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation.Crossref | GoogleScholarGoogle Scholar |
de Lamirande, E., and Gagnon, C. (1992). Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J. Androl. 13, 379–386.
| 1:CAS:528:DyaK3sXkslSi&md5=58c1a9c7bf0b57aa0c0e3a01594de77cCAS |
de Lamirande, E., Jiang, H., Zini, A., Kodama, H., and Gagnon, C. (1997). Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 48–54.
| Reactive oxygen species and sperm physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Kmsrk%3D&md5=a28ac27087915289815015c059bed38fCAS |
Derijck, A., Van der Heijden, G., Giele, M., Philippens, M., and De Boer, P. (2008). DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum. Mol. Genet. 17, 1922–1937.
| DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFOkt7Y%3D&md5=1e9ff0e43632a634ead278f2dedfb8a0CAS |
Eckert, J., and Niemann, H. (1995). In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media. Theriogenology 43, 1211–1225.
| In vitro maturation, fertilization and culture to blastocysts of bovine oocytes in protein-free media.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVCltg%3D%3D&md5=055498ad747a8d686df0bb1df45250e6CAS |
Evenson, D., and Jost, L. (2001). Sperm chromatin structure assay for fertility assessment. Curr. Prot. Cytom. 13, 7–13.
| Sperm chromatin structure assay for fertility assessment.Crossref | GoogleScholarGoogle Scholar |
Fairbairn, D. W, Olive, P. L., and O’Neill, K. L. (1995). The comet assay: a comprehensive review. Mutat. Res. 339, 37–59.
| The comet assay: a comprehensive review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktlChsro%3D&md5=0d002b13cf2409a017d645103e91890eCAS |
Fernández-Gonzalez, R., Moreira, P. N., Pérez-Crespo, M., Sánchez-Martín, M., Ramirez, M. A., Pericuesta, E., and Gutiérrez-Adán, A. (2008). Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 78, 761–772.
| Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring.Crossref | GoogleScholarGoogle Scholar |
Gardner, D., Lane, M. W., and Lane, M. (1997). Bovine blastocyst cell number is increased by culture with EDTA for the first 72 hours of development from the zygote. Theriogenology 47, 278.
| Bovine blastocyst cell number is increased by culture with EDTA for the first 72 hours of development from the zygote.Crossref | GoogleScholarGoogle Scholar |
Gawecka, J. E., Marh, J., Ortega, M., Yamauchi, Y., Ward, M. A., and Ward, W. S. (2013). Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS One 8, e56385.
| Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFyqtb8%3D&md5=5e6b69d21ffbbff3f916571b82f371a2CAS |
Gutteridge, J. M. C., and Halliwell, B. (1990). The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15, 129–135.
| The measurement and mechanism of lipid peroxidation in biological systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFCgu7w%3D&md5=a6127a338ae82f0c83d5936f3b4fa00dCAS |
Hamatani, T., Carter, M., Sharov, A., and Ko, M. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131.
| Dynamics of global gene expression changes during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlaktA%3D%3D&md5=daa6fe7a8b1b5cae2f1bbb071392e563CAS |
Holm, P., Shukri, N. N., Vajta, G., Booth, P., Bendixen, C., and Callesen, H. (1998). Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology 50, 1285–1299.
| Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVKitQ%3D%3D&md5=339c704d94c30654c3f680ad10490ce9CAS |
Jaroudi, S., and SenGupta, S. (2007). DNA repair in mammalian embryos. Mutat. Res. 635, 53–77.
| DNA repair in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CntQ%3D%3D&md5=e8e8c63ed0cacbb961b1cf6a3c900db6CAS |
Kemal Duru, N., Morshedi, M., and Oehninger, S. (2000). Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 74, 1200–1207.
| 1:STN:280:DC%2BD3M%2FotVGlug%3D%3D&md5=ce4415b10170adeb211e08310d687fb2CAS |
Kitagawa, Y., Suzuki, K., Yoneda, A., and Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–1197.
| Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCqs7o%3D&md5=a44e184079d976e5a3cfadc3c4ad7273CAS |
Lane, M., McPherson, N., and Fullston, T. (2014). Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring. PLoS One 9, e100832.
| Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.Crossref | GoogleScholarGoogle Scholar |
Malhi, P. S., Adams, G. P., and Singh, J. (2005). Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol. Reprod. 73, 45–53.
| Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1Srtrg%3D&md5=583a3c4fe7fb100c9f6378077c377a93CAS |
Marchetti, F., Essers, J., Kanaar, R., and Wyrobek, A. J. (2007). Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl Acad. Sci. USA 104, 17725–17729.
| Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12mu7vP&md5=85a30513638fd66bf75b270bb57b7b8aCAS |
Ménézo, Y., Veiga, A., and Pouly, J. L. (2000). Assisted reproductive technology (ART) in humans: facts and uncertainties. Theriogenology 53, 599–610.
| Assisted reproductive technology (ART) in humans: facts and uncertainties.Crossref | GoogleScholarGoogle Scholar |
Morton, K. M., Herrmann, D., Sieg, B., Struckmann, C., Maxwell, W. M., Rath, D., Evans, G., Lucas-Hahn, A., Niemann, H., and Wrenzycki, C. (2007). Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow‐cytometrically sex‐sorted sperm. Mol. Reprod. Dev. 74, 931–940.
| Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow‐cytometrically sex‐sorted sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhtbc%3D&md5=e9644cdc7ca38f41454a4bd3def582dbCAS |
Neuber, E., and Powers, R. (2000). Is the mouse a clinically relevant model for human fertilization failures? Hum. Reprod. 15, 171–174.
| Is the mouse a clinically relevant model for human fertilization failures?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FnvFaisA%3D%3D&md5=c9e39ce4a4a8cdd8a4911a3f1c5a6f91CAS |
Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent. Theriogenology 53, 21–34.
| Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyqug%3D%3D&md5=b2fa5b25ae2c398000fc3baa3f2b73faCAS |
Ozawa, M., and Hansen, P. (2011). A novel method for purification of inner cell mass and trophectoderm cells from blastocysts using magnetic activated cell sorting. Fertil. Steril. 95, 799–802.
| A novel method for purification of inner cell mass and trophectoderm cells from blastocysts using magnetic activated cell sorting.Crossref | GoogleScholarGoogle Scholar |
Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895.
| A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFCmtLk%3D&md5=30e3c5df22b9ed9f68d8a445528ca71dCAS |
Pérez-Cerezales, S., Martínez-Páramo, S., Beirão, J., and Herráez, M. P. (2010). Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction 139, 989–997.
| Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.Crossref | GoogleScholarGoogle Scholar |
Peris, S. I., Bilodeau, J., Dufour, M., and Bailey, J. L. (2007). Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol. Reprod. Dev. 74, 878–892.
| Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlKlsbc%3D&md5=f993f3214091a592b3c8b9c3d7ed851eCAS |
Picco, S. J., Anchordoquy, J. M., de Matos, D. G., Anchordoquy, J. P., Seoane, A., Mattioli, G. A., Errecalde, A. L., and Furnus, C. C. (2010). Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 74, 1141–1148.
| Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrs7jL&md5=ec585dd007b73b5784a21a13a368a28fCAS |
Qiao, J., and Li, M. (2013). Getting the broken blastomere out of development. Cell Cycle 12, 3247–3248.
| Getting the broken blastomere out of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWhurY%3D&md5=234aec3c16aada54b35612e1c40054f7CAS |
Rahman, M. B., Vandaele, L., Rijsselaere, T., Zhandi, M., Maes, D., Shamsuddin, M., and Van Soom, A. (2012). Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa. Reprod. Fertil. Dev. 24, 608–618.
| Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVKitbc%3D&md5=9ade287c45720541ee77d15c73df996dCAS |
Richter, C., Park, J., and Ames, B. (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl Acad. Sci. USA 85, 6465–6467.
| Normal oxidative damage to mitochondrial and nuclear DNA is extensive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1Ghs70%3D&md5=0c3a79d47040432007e81b6f0b23c8f2CAS |
Schiller, J., Fuchs, B., Arnhold, J., and Arnold, K. (2003). Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies. Curr. Med. Chem. 10, 2123–2145.
| Contribution of reactive oxygen species to cartilage degradation in rheumatic diseases: molecular pathways, diagnosis and potential therapeutic strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyqt78%3D&md5=51518b8000db58fee57c5e76c5380d61CAS |
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682.
| Fiji: an open-source platform for biological-image analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKnurbJ&md5=f7c25e523d3df1c4428e5abf6e89c3f0CAS |
Silva, P. F. N., Gadella, B. M., Colenbrander, B., and Roelen, B. A. J. (2007). Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology 67, 609–619.
| Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlyqug%3D%3D&md5=0df74787165c913fa450a54389d7e682CAS |
Smith, T. B., Dun, M. D., Smith, N. D., Curry, B. J., Connaughton, H. S., and Aitken, R. J. (2013). The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell Sci. 126, 1488–1497.
| The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFKjsLk%3D&md5=d79dc6dc24be9bf18b6cfb9b25356aebCAS |
Stachowiak, E. M., Papis, K., Kruszewski, M., Iwaneńko, T., Bartłomiejczyk, T., and Modliński, J. A. (2009). Comparison of the level(s) of DNA damage using comet assay in bovine oocytes subjected to selected vitrification methods. Reprod. Domest. Anim. 44, 653–658.
| Comparison of the level(s) of DNA damage using comet assay in bovine oocytes subjected to selected vitrification methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaiurnL&md5=17cd203c9fd5bb638f23b4ad14d1f5cdCAS |
Stadtman, E. R., and Levine, R. L. (2000). Protein oxidation. Ann. N. Y. Acad. Sci. 899, 191–208.
| Protein oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1ShsL4%3D&md5=72b86096811179068a3fe5e49130040aCAS |
Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Löbrich, M., and Jeggo, P. A. (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396.
| ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1yjtLo%3D&md5=8774bbce6fe442c281c73b41b6667cd1CAS |
Sturmey, R. G., Hawkhead, J. A., Barker, E. A., and Leese, H. J. (2009). DNA damage and metabolic activity in the preimplantation embryo. Hum. Reprod. 24, 81–91.
| DNA damage and metabolic activity in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbnF&md5=a1c60cc5e192a885ef4ddd14eb58e8f1CAS |
Takahashi, M., Keicho, K., and Takahashi, H. (2000). Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology 54, 137–145.
| Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVaisrg%3D&md5=b5a5cc9f67d46d1790836ddd197e80f5CAS |
Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
| Transition from maternal to embryonic control in early mammalian development: a comparison of several species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=ee81766d959daef2e49b49170057438cCAS |
Tervit, H. R., Whittingham, D. G., and Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
| Successful culture in vitro of sheep and cattle ova.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2FgvFamug%3D%3D&md5=52ff4df5203efaed18b9a679070da52eCAS |
Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221.
| Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Wrurg%3D&md5=2bd9ce3375dd61e21e51b908ab37bd2dCAS |
Wang, B., Li, Z., Wang, C., Chen, M., Xiao, J., Wu, X., Xiao, W., Song, Y., and Wang, X. (2013a). Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm. PLoS One 8, e73987.
| Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrsLvE&md5=4b2be5de0b5028f61bc0bda8fb7da783CAS |
Wang, Z. W., Ma, X. S., Ma, J. Y., Luo, Y. B., Lin, F., Wang, Z. B., Fan, H. Y., Schatten, H., and Sun, Q. Y. (2013b). Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos. Cell Cycle 12, 3336–3344.
| Laser microbeam-induced DNA damage inhibits cell division in fertilized eggs and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWhu7Y%3D&md5=60d34f014cae7d62225d37dbd78a13e5CAS |
Xiao, J., Liu, Y., Li, Z., Zhou, Y., Lin, H., and Wu, X. (2012). Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on γH2AX repair and embryo development. PLoS One 7, e38742.
| Effects of the insemination of hydrogen peroxide-treated epididymal mouse spermatozoa on γH2AX repair and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFyltLw%3D&md5=675c04db51602a6642205940610cb24fCAS |
Yamauchi, Y., Riel, J. M., and Ward, M. A. (2012). Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. J. Androl. 33, 229–238.
| Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVyrsb4%3D&md5=d043dd3a4c5230acad3be9ed22c327b2CAS |
Yuan, Y. Q., Van Soom, A., Coopman, F. O. J., Mintiens, K., Boerjan, M. L., Van Zeveren, A., De Kruif, A., and Peelman, L. J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 1585–1596.
| Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FltFSrsA%3D%3D&md5=c0446903bff79af962ce0421caafedf4CAS |
Zhang, Y., Qian, D., Li, Z., Huang, Y., Wu, Q., Ru, G., Chen, M., and Wang, B. (2016). Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones 21, 687–696.
| Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvFOmtLk%3D&md5=05d8fe044138c9db36095e0fae0461f0CAS |
Ziegler-Birling, C., Helmrich, A., Tora, L., and Torres-Padilla, M. E. (2009). Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage. Int. J. Dev. Biol. 53, 1003–1011.
| Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12htb%2FF&md5=4894a4fa3c732a529d78850a5a1bc9bfCAS |
Zini, A., and Libman, J. (2006). Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ 175, 495–500.
| Sperm DNA damage: clinical significance in the era of assisted reproduction.Crossref | GoogleScholarGoogle Scholar |