Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Implementation of novel statistical procedures and other advanced approaches to improve analysis of CASA data

M. Ramón A and F. Martínez-Pastor B C
+ Author Affiliations
- Author Affiliations

A CERSYRA-IRIAF, Junta de Comunidades de Castilla-La Mancha, Valdepeñas, Spain.

B INDEGSAL and Department of Molecular Biology (Cell Biology), Universidad de León, 24071 León, Spain.

C Corresponding author. Email: felipe.martinez@unileon.es

Reproduction, Fertility and Development 30(6) 860-866 https://doi.org/10.1071/RD17479
Submitted: 9 November 2017  Accepted: 14 March 2018   Published: 23 April 2018

Abstract

Computer-aided sperm analysis (CASA) produces a wealth of data that is frequently ignored. The use of multiparametric statistical methods can help explore these datasets, unveiling the subpopulation structure of sperm samples. In this review we analyse the significance of the internal heterogeneity of sperm samples and its relevance. We also provide a brief description of the statistical tools used for extracting sperm subpopulations from the datasets, namely unsupervised clustering (with non-hierarchical, hierarchical and two-step methods) and the most advanced supervised methods, based on machine learning. The former method has allowed exploration of subpopulation patterns in many species, whereas the latter offering further possibilities, especially considering functional studies and the practical use of subpopulation analysis. We also consider novel approaches, such as the use of geometric morphometrics or imaging flow cytometry. Finally, although the data provided by CASA systems provides valuable information on sperm samples by applying clustering analyses, there are several caveats. Protocols for capturing and analysing motility or morphometry should be standardised and adapted to each experiment, and the algorithms should be open in order to allow comparison of results between laboratories. Moreover, we must be aware of new technology that could change the paradigm for studying sperm motility and morphology.

Additional keywords: clustering, computer-aided sperm analyses, spermatozoon, subpopulations, support vector machines (SVM).


References

Abaigar, T., Holt, W. V., Harrison, R. A., and del Barrio, G. (1999). Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol. Reprod. 60, 32–41.
Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFymtA%3D%3D&md5=4b952b68134a6a2b14a3285ba42c3b2fCAS |

Altman, N., and Krzywinski, M. (2017). Points of significance: clustering. Nat. Methods 14, 545–546.
Points of significance: clustering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXovVSnsLs%3D&md5=163660a33ce5bd973506b0c03083c63cCAS |

Amann, R. P., and Waberski, D. (2014). Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17.e3.
Computer-assisted sperm analysis (CASA): capabilities and potential developments.Crossref | GoogleScholarGoogle Scholar |

Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V., and Morrissey, P. (2007). Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27, 653–670.
Cellular image analysis and imaging by flow cytometry.Crossref | GoogleScholarGoogle Scholar |

Birkhead, T. R., Hosken, D. J., and Pitnick, S. S. (2008). ‘Sperm Biology: An Evolutionary Perspective.’ (Academic Press: Burlington, MA.)

Blasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., Davies, D., Filby, A., Carpenter, A. E., and Rees, P. (2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256.
Label-free cell cycle analysis for high-throughput imaging flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltFOrtQ%3D%3D&md5=f9ed6cd3a25eb8c693da648b3893abb3CAS |

Bompart, D., García-Molina, A., Valverde, A., Caldeira, C., Yániz, J., Núñez de Murga, M., and Soler, C. (2018). CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. , .
CASA-Mot technology: how results are affected by the frame rate and counting chamber.Crossref | GoogleScholarGoogle Scholar |

Bookstein, F. L. (1997). ‘Morphometric Tools for Landmark Data: Geometry and Biology.’ (Cambridge University Press: Cambridge.)

Broekhuijse, M. L. W. J., Gaustad, A. H., Bolarin Guillén, A., and Knol, E. F. (2015). Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility. Reprod. Domest. Anim. 50, 103–109.
Efficient boar semen production and genetic contribution: the impact of low-dose artificial insemination on fertility.Crossref | GoogleScholarGoogle Scholar |

Butts, I. A. E., Ward, M. A. R., Litvak, M. K., Pitcher, T. E., Alavi, S. M. H., Trippel, E. A., and Rideout, R. M. (2011). Automated sperm head morphology analyzer for open-source software. Theriogenology 76, 1756–1761.e1–3.
Automated sperm head morphology analyzer for open-source software.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MbnvVCktQ%3D%3D&md5=b5a32fbaa543ef0e78469ed5004058e7CAS |

Castellini, C., Dal Bosco, A., Ruggeri, S., and Collodel, G. (2011). What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 96, 24–27.
What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis?Crossref | GoogleScholarGoogle Scholar |

Chang, V., Garcia, A., Hitschfeld, N., and Härtel, S. (2017). Gold-standard for computer-assisted morphological sperm analysis. Comput. Biol. Med. 83, 143–150.
Gold-standard for computer-assisted morphological sperm analysis.Crossref | GoogleScholarGoogle Scholar |

Davis, R. O., Drobnis, E. Z., and Overstreet, J. W. (1995). Application of multivariate cluster, discriminate function, and stepwise regression analyses to variable selection and predictive modeling of sperm cryosurvival. Fertil. Steril. 63, 1051–1057.
Application of multivariate cluster, discriminate function, and stepwise regression analyses to variable selection and predictive modeling of sperm cryosurvival.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3jslChtQ%3D%3D&md5=aa354b5bdc9d5f0131d90e1a5d41991cCAS |

Elsayed, M., El-Sherry, T. M., and Abdelgawad, M. (2015). Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 84, 1367–1377.
Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J.Crossref | GoogleScholarGoogle Scholar |

Esteso, M. C., Fernández-Santos, M. R., Soler, A. J., Montoro, V., Martínez-Pastor, F., and Garde, J. J. (2009). Identification of sperm-head morphometric subpopulations in Iberian red deer epididymal sperm samples. Reprod. Domest. Anim. 44, 206–211.
Identification of sperm-head morphometric subpopulations in Iberian red deer epididymal sperm samples.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3jsVOjtw%3D%3D&md5=eb753b4d034704ef264e4c1e172e0a98CAS |

Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). ‘Cluster Analysis.’ (Wiley: Chichester.)

Fernández-Gago, R., Álvarez-Rodríguez, M., Alonso, M. E., González, J. R., Alegre, B., Domínguez, J. C., and Martínez-Pastor, F. (2017). Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations. Reprod. Fertil. Dev. 29, 1576–1584.
Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations.Crossref | GoogleScholarGoogle Scholar |

Firman, R. C., and Simmons, L. W. (2009). Sperm competition and the evolution of the sperm hook in house mice. J. Evol. Biol. 22, 2505–2511.
Sperm competition and the evolution of the sperm hook in house mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2Fhtl2qtA%3D%3D&md5=3f9ae0a2fdc0741c0b74eb41e8e4922aCAS |

Firman, R. C., Cheam, L. Y., and Simmons, L. W. (2011). Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 24, 856–862.
Sperm competition does not influence sperm hook morphology in selection lines of house mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3msVKgtw%3D%3D&md5=11f6efce476cb846d52bea135c583cfaCAS |

Fitzpatrick, J. L., Garcia-Gonzalez, F., and Evans, J. P. (2010). Linking sperm length and velocity: the importance of intramale variation. Biol. Lett. 6, 797–799.
Linking sperm length and velocity: the importance of intramale variation.Crossref | GoogleScholarGoogle Scholar |

Flores, E., Fernández-Novell, J. M., Peña, A., and Rodríguez-Gil, J. E. (2009). The degree of resistance to freezing–thawing is related to specific changes in the structures of motile sperm subpopulations and mitochondrial activity in boar spermatozoa. Theriogenology 72, 784–797.
The degree of resistance to freezing–thawing is related to specific changes in the structures of motile sperm subpopulations and mitochondrial activity in boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgsL3I&md5=496d422be59ef925c11455803d62482aCAS |

Gallego, V., Vílchez, M. C., Peñaranda, D. S., Pérez, L., Herráez, M. P., Asturiano, J. F., and Martínez-Pastor, F. (2015). Subpopulation pattern of eel spermatozoa is affected by post-activation time, hormonal treatment and the thermal regimen. Reprod. Fertil. Dev. 27, 529–543.
Subpopulation pattern of eel spermatozoa is affected by post-activation time, hormonal treatment and the thermal regimen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVSlt78%3D&md5=0450b3cb8c88dc3434c2b4668e8fbb0aCAS |

Garde, J. J., Martinez-Pastor, F., Gomendio, M., Malo, A. F., Soler, A. J., Fernandez-Santos, M., Esteso, M. C., Garcia, A. J., Anel, L., and Roldan, E. R. S. (2006). The application of reproductive technologies to natural populations of red deer. Reprod. Domest. Anim. 41, 93–102.
The application of reproductive technologies to natural populations of red deer.Crossref | GoogleScholarGoogle Scholar |

Giaretta, E., Munerato, M., Yeste, M., Galeati, G., Spinaci, M., Tamanini, C., Mari, G., and Bucci, D. (2017). Implementing an open-access CASA software for the assessment of stallion sperm motility: relationship with other sperm quality parameters. Anim. Reprod. Sci. 176, 11–19.
Implementing an open-access CASA software for the assessment of stallion sperm motility: relationship with other sperm quality parameters.Crossref | GoogleScholarGoogle Scholar |

Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W., and O’Brien, D. A. (2011). Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 84, 1207–1215.
Classification of mouse sperm motility patterns using an automated multiclass support vector machines model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemu74%3D&md5=2ac035c3a6a42df7aa57305a8ac032a1CAS |

Hastie, T., Tibshirani, R., and Friedman, J. (2017). ‘The Elements of Statistical Learning: Data Mining, Inference, and Prediction.’ 2nd edn. (Springer: New York, NY.)

Henning, H., Petrunkina, A. M., Harrison, R. A. P., and Waberski, D. (2014). Cluster analysis reveals a binary effect of storage on boar sperm motility function. Reprod. Fertil. Dev. 26, 623–632.
Cluster analysis reveals a binary effect of storage on boar sperm motility function.Crossref | GoogleScholarGoogle Scholar |

Holt, C., Holt, W. V., Moore, H. D., Reed, H. C., and Curnock, R. M. (1997). Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. J. Androl. 18, 312–323.
| 1:STN:280:DyaK2szks1Kntg%3D%3D&md5=ec759071fb5b956bfa862d5e85c59636CAS |

Ledesma, A., Zalazar, L., Fernández-Alegre, E., Hozbor, F., Cesari, A., and Martínez-Pastor, F. (2017). Seminal plasma proteins modify the distribution of sperm subpopulations in cryopreserved semen of rams with lesser fertility. Anim. Reprod. Sci. 184, 44–50.
Seminal plasma proteins modify the distribution of sperm subpopulations in cryopreserved semen of rams with lesser fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFynsrjN&md5=da1391560a32da8c48354bcd0d3a0061CAS |

Leonard, S. T., and Droege, M. (2008). The uses and benefits of cluster analysis in pharmacy research. Res. Social Adm. Pharm. 4, 1–11.
The uses and benefits of cluster analysis in pharmacy research.Crossref | GoogleScholarGoogle Scholar |

Malo, A. F., Gomendio, M., Garde, J., Lang-Lenton, B., Soler, A. J., and Roldan, E. R. S. (2006). Sperm design and sperm function. Biol. Lett. 2, 246–249.
Sperm design and sperm function.Crossref | GoogleScholarGoogle Scholar |

Maroto-Morales, A., Ramón, M., García-Álvarez, O., Soler, A. J., Fernández-Santos, M. R., Roldan, E. R. S., Gomendio, M., Pérez-Guzmán, M. D., and Garde, J. J. (2012). Morphometrically-distinct sperm subpopulations defined by a multistep statistical procedure in ram ejaculates: intra- and interindividual variation. Theriogenology 77, 1529–1539.
Morphometrically-distinct sperm subpopulations defined by a multistep statistical procedure in ram ejaculates: intra- and interindividual variation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vkt1GmtA%3D%3D&md5=9b574818e6bdde17fe0ce343d274ab33CAS |

Maroto-Morales, A., Ramón, M., García-Álvarez, O., Montoro, V., Soler, A. J., Fernández-Santos, M. R., Roldan, E. R. S., Pérez-Guzmán, M. D., and Garde, J. J. (2015). Sperm head phenotype and male fertility in ram semen. Theriogenology 84, 1536–1541.
Sperm head phenotype and male fertility in ram semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC287ntFShtw%3D%3D&md5=ae183c0e9d92f21c82e1cd5ceb840878CAS |

Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M. R., Soler, A. J., and Garde, J. J. (2016). Current status and potential of morphometric sperm analysis. Asian J. Androl. 18, 863–870.
Current status and potential of morphometric sperm analysis.Crossref | GoogleScholarGoogle Scholar |

Martínez, I. N., Moran, J. M., and Pena, F. J. (2006). Two-step cluster procedure after principal component analysis identifies sperm subpopulations in canine ejaculates and its relation to cryoresistance. J. Androl. 27, 596–603.
Two-step cluster procedure after principal component analysis identifies sperm subpopulations in canine ejaculates and its relation to cryoresistance.Crossref | GoogleScholarGoogle Scholar |

Martinez-Pastor, F., Garcia-Macias, V., Alvarez, M., Herraez, P., Anel, L., and de Paz, P. (2005). Sperm subpopulations in Iberian red deer epididymal sperm and their changes through the cryopreservation process. Biol. Reprod. 72, 316–327.
Sperm subpopulations in Iberian red deer epididymal sperm and their changes through the cryopreservation process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptFGmtA%3D%3D&md5=4f81d95f6a6453603629369583578ebdCAS |

Martínez-Pastor, F., Cabrita, E., Soares, F., Anel, L., and Dinis, M. T. (2008). Multivariate cluster analysis to study motility activation of Solea senegalensis spermatozoa: a model for marine teleosts. Reproduction 135, 449–459.
Multivariate cluster analysis to study motility activation of Solea senegalensis spermatozoa: a model for marine teleosts.Crossref | GoogleScholarGoogle Scholar |

Martínez-Pastor, F., Tizado, E. J., Garde, J. J., Anel, L., and de Paz, P. (2011). Statistical series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75, 783–795.
Statistical series: opportunities and challenges of sperm motility subpopulation analysis.Crossref | GoogleScholarGoogle Scholar |

Mcnulty, K. P., and Vinyard, C. J. (2015). Morphometry, geometry, function, and the future. Anat. Rec. (Hoboken) 298, 328–333.
Morphometry, geometry, function, and the future.Crossref | GoogleScholarGoogle Scholar |

Mirsky, S. K., Barnea, I., Levi, M., Greenspan, H., and Shaked, N. T. (2017). Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning. Cytometry A. 91, 893–900.
Automated analysis of individual sperm cells using stain-free interferometric phase microscopy and machine learning.Crossref | GoogleScholarGoogle Scholar |

Owen, D. H., and Katz, D. F. (1993). Sampling factors influencing accuracy of sperm kinematic analysis. J. Androl. 14, 210–221.
| 1:STN:280:DyaK2c%2Fht1aitA%3D%3D&md5=20e387e32924f1135d64801d2016faf3CAS |

Peña, F. J., Saravia, F., García-Herreros, M., Núñez-martínez, I., Tapia, J. A., Johannisson, A., Wallgren, M., and Rodríguez-Martínez, H. (2005). Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J. Androl. 26, 716–723.
Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality.Crossref | GoogleScholarGoogle Scholar |

Petrunkina, A. M., Waberski, D., Günzel-Apel, A. R., and Töpfer-Petersen, E. (2007). Determinants of sperm quality and fertility in domestic species. Reproduction 134, 3–17.
Determinants of sperm quality and fertility in domestic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGisrs%3D&md5=2cfee9fdca8b42b5e837685620c553bbCAS |

Purchase, C. F., and Earle, P. T. (2012). Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. J. Appl. Ichthyol. 28, 1013–1016.
Modifications to the IMAGEJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data.Crossref | GoogleScholarGoogle Scholar |

Quintero-Moreno, A., Rigau, T., and Rodriguez-Gil, J. E. (2007). Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size. Reprod. Domest. Anim. 42, 312–319.
Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3psF2qtQ%3D%3D&md5=75737e8f752263c3e462d3e63df20821CAS |

Ramón, M., Martínez-Pastor, F., García-Álvarez, O., Maroto-Morales, A., Soler, A. J., Jiménez-Rabadán, P., Fernández-Santos, M. R., Bernabéu, R., and Garde, J. J. (2012). Taking advantage of the use of supervised learning methods for characterization of sperm population structure related with freezability in the Iberian red deer. Theriogenology 77, 1661–1672.
Taking advantage of the use of supervised learning methods for characterization of sperm population structure related with freezability in the Iberian red deer.Crossref | GoogleScholarGoogle Scholar |

Ramón, M., Soler, A. J., Ortiz, J. A., García-Alvarez, O., Maroto-Morales, A., Roldan, E. R. S., and Garde, J. J. (2013). Sperm population structure and male fertility: an intraspecific study of sperm design and velocity in red deer. Biol. Reprod. 89, 110.
Sperm population structure and male fertility: an intraspecific study of sperm design and velocity in red deer.Crossref | GoogleScholarGoogle Scholar |

Ramón, M., Jimenez-Rabadan, P., Garcia-Alvarez, O., Maroto-Morales, A., Soler, A. J., Fernandez-Santos, M. R., Perez-Guzman, M. D., and Garde, J. J. (2014). Understanding sperm heterogeneity: biological and practical implications. Reprod. Domest. Anim. 49, 30–36.
Understanding sperm heterogeneity: biological and practical implications.Crossref | GoogleScholarGoogle Scholar |

Rivera, M. M., Quintero-Moreno, A., Barrera, X., Palomo, M. J., Rigau, T., and Rodríguez-Gil, J. E. (2005). Natural Mediterranean photoperiod does not affect the main parameters of boar-semen quality analysis. Theriogenology 64, 934–946.
Natural Mediterranean photoperiod does not affect the main parameters of boar-semen quality analysis.Crossref | GoogleScholarGoogle Scholar |

Rohlf, F. J., and Slice, D. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59.
Extensions of the Procrustes method for the optimal superimposition of landmarks.Crossref | GoogleScholarGoogle Scholar |

Sahoo, A. J., and Kumar, Y. (2014). Seminal quality prediction using data mining methods. Technol. Health Care 22, 531–545.
Seminal quality prediction using data mining methods.Crossref | GoogleScholarGoogle Scholar |

Santolaria, P., Vicente-Fiel, S., Palacín, I., Fantova, E., Blasco, M. E., Silvestre, M. A., and Yániz, J. L. (2015). Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim. Reprod. Sci. 163, 82–88.
Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28zmtVGntA%3D%3D&md5=59aab83397e92d2f00e9a5d7587bafc1CAS |

Simpson, J. L., Humphries, S., Evans, J. P., Simmons, L. W., and Fitzpatrick, J. L. (2014). Relationships between sperm length and speed differ among three internally and three externally fertilizing species. Evolution 68, 92–104.
Relationships between sperm length and speed differ among three internally and three externally fertilizing species.Crossref | GoogleScholarGoogle Scholar |

Su, T.-W., Choi, I., Feng, J., Huang, K., McLeod, E., and Ozcan, A. (2013). Sperm trajectories form chiral ribbons. Sci. Rep. 3, 1664.
Sperm trajectories form chiral ribbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVansrrI&md5=bf6632a7014079d70cb35a3db99913acCAS |

Swedlow, J. R., and Eliceiri, K. W. (2009). Open source bioimage informatics for cell biology. Trends Cell Biol. 19, 656–660.
Open source bioimage informatics for cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlChurbM&md5=43213586e82e39c6a463a4e08950b071CAS |

Varea Sánchez, M., Bastir, M., and Roldan, E. R. S. (2013). Geometric morphometrics of rodent sperm head shape. PLoS One 8, e80607.
Geometric morphometrics of rodent sperm head shape.Crossref | GoogleScholarGoogle Scholar |

Verstegen, J., Iguer-Ouada, M., and Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–179.
Computer assisted semen analyzers in andrology research and veterinary practice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fksl2mtA%3D%3D&md5=f7df33962b8de34ef0fd69f0834e96fcCAS |

Vicente-Fiel, S., Palacín, I., Santolaria, P., Hidalgo, C. O., Silvestre, M. A., Arrebola, F., and Yániz, J. L. (2013). A comparative study of the sperm nuclear morphometry in cattle, goat, sheep, and pigs using a new computer-assisted method (CASMA-F). Theriogenology 79, 436–442.
A comparative study of the sperm nuclear morphometry in cattle, goat, sheep, and pigs using a new computer-assisted method (CASMA-F).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7ls1Cjtw%3D%3D&md5=05a569dbe1be2508a8fdc99f35cc4397CAS |

Wilson-Leedy, J. G., and Ingermann, R. L. (2007). Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67, 661–672.
Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters.Crossref | GoogleScholarGoogle Scholar |

Xu, R., and Wunsch, D. C. (2005). Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678.
Survey of clustering algorithms.Crossref | GoogleScholarGoogle Scholar |

Yániz, J. L., Palacín, I., Vicente-Fiel, S., Sánchez-Nadal, J. A., and Santolaria, P. (2015a). Sperm population structure in high and low field fertility rams. Anim. Reprod. Sci. 156, 128–134.
Sperm population structure in high and low field fertility rams.Crossref | GoogleScholarGoogle Scholar |

Yániz, J. L., Soler, C., and Santolaria, P. (2015b). Computer assisted sperm morphometry in mammals: a review. Anim. Reprod. Sci. 156, 1–12.
Computer assisted sperm morphometry in mammals: a review.Crossref | GoogleScholarGoogle Scholar |

Yániz, J. L., Vicente-Fiel, S., Soler, C., Recreo, P., Carretero, T., Bono, A., Berné, J. M., and Santolaria, P. (2016). Comparison of different statistical approaches to evaluate morphometric sperm subpopulations in men. Asian J. Androl. 18, 819–823.
Comparison of different statistical approaches to evaluate morphometric sperm subpopulations in men.Crossref | GoogleScholarGoogle Scholar |

Yániz, J. L., Silvestre, M. A., Santolaria, P., and Soler, C. (2018a). CASA-Mot in mammals: an update. Reprod. Fertil. Dev , .
CASA-Mot in mammals: an update.Crossref | GoogleScholarGoogle Scholar |

Yániz, J. L., Palacín, I., Caycho, K. S., Soler, C., Silvestre, M. A., and Santolaria, P. (2018b). Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique. Reprod. Fertil. Dev. , .
Determining the relationship between bull sperm kinematic subpopulations and fluorescence groups using an integrated sperm quality analysis technique.Crossref | GoogleScholarGoogle Scholar |

Yeste, M., Bonet, S., Rodríguez-Gil, J. E., and Rivera Del Álamo, M. M. (2018). Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements? Reprod. Fertil. Dev. , .
Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements?Crossref | GoogleScholarGoogle Scholar |

Zelditch, M. L., Swiderski, D. L., and Sheets, H. D. (2012). ‘Geometric Morphometrics for Biologists: A Primer.’ (Academic Press: New York.)