The influence of dopaminergic system inhibition on biosynthesis of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in anoestrous sheep; hierarchical role of kisspeptin and RFamide-related peptide-3 (RFRP-3)
M. Ciechanowska A D , M. Łapot A , E. Paruszewska A , W. Radawiec B and F. Przekop CA Department of Pharmacology and Toxicology, The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
B The University of Warmia and Mazury, M. Oczapowskiego 2, 10-719 Olsztyn, Poland.
C Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.
D Corresponding author. Email: mciechanowska@wihe.waw.pl
Reproduction, Fertility and Development 30(4) 672-680 https://doi.org/10.1071/RD16309
Submitted: 9 August 2016 Accepted: 14 September 2017 Published: 12 October 2017
Abstract
This study aimed to explain how prolonged inhibition of central dopaminergic activity affects the cellular processes governing gonadotrophin-releasing hormone (GnRH) and LH secretion in anoestrous sheep. For this purpose, the study included two experimental approaches: first, we investigated the effect of infusion of sulpiride, a dopaminergic D2 receptor antagonist (D2R), on GnRH and GnRH receptor (GnRHR) biosynthesis in the hypothalamus and on GnRHR in the anterior pituitary using an immunoassay. This analysis was supplemented by analysis of plasma LH levels by radioimmunoassay. Second, we used real-time polymerase chain reaction to analyse the influence of sulpiride on the levels of kisspeptin (Kiss1) mRNA in the preoptic area and ventromedial hypothalamus including arcuate nucleus (VMH/ARC), and RFamide-related peptide-3 (RFRP-3) mRNA in the paraventricular nucleus (PVN) and dorsomedial hypothalamic nucleus. Sulpiride significantly increased plasma LH concentration and the levels of GnRH and GnRHR in the hypothalamic–pituitary unit. The abolition of dopaminergic activity resulted in a significant increase in transcript level of Kiss1 in VMH/ARC and a decrease of RFRP-3 in PVN. The study demonstrates that dopaminergic neurotransmission through D2R is involved in the regulatory pathways of GnRH and GnRHR biosynthesis in the hypothalamic–pituitary unit of anoestrous sheep, conceivably via mechanisms in which Kiss1 and RFRP-3 participate.
Additional keywords: dopamine, ewe, GnRHR, hypothalamus, pituitary.
References
Adams, V. L., Goodman, R. L., Salm, A. K., Coolen, L. M., Karsch, F. J., and Lehman, M. N. (2006). Morphological plasticity in the neural circuitry responsible for seasonal breeding in the ewe. Endocrinology 147, 4843–4851.| Morphological plasticity in the neural circuitry responsible for seasonal breeding in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksbvE&md5=0c107ac81531df58e40bd32c55d2a6a8CAS |
Anderson, S. T., Walsh, J. P., Tillet, Y., Clarke, I. J., and Curlevis, J. D. (2001). Dopaminergic input to the ventromedial hypothalamus facilitates the estrogen-induced luteinizing hormone surge in ewes. Neuroendocrinology 73, 91–101.
| Dopaminergic input to the ventromedial hypothalamus facilitates the estrogen-induced luteinizing hormone surge in ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslGhsrk%3D&md5=938c1e984231fbe742a5fbd688fe3a2dCAS |
Bertrand, F., Thiery, J. C., Picard, S., and Malpaux, B. (1999). Implication of D2-like dopaminergic receptors in the median eminence during the establishment of long-day inhibition of LH secretion in the ewe. J. Endocrinol. 163, 243–254.
| Implication of D2-like dopaminergic receptors in the median eminence during the establishment of long-day inhibition of LH secretion in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12itr4%3D&md5=d30ccc8793c33ddd42880bb123f85da0CAS |
Caldani, M., Batailler, M., Thiery, J. C., and Dubois, M. P. (1988). LHRH immunoreactive structures in the sheep brain. Histochemistry 89, 129–139.
| LHRH immunoreactive structures in the sheep brain.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3osFWlsw%3D%3D&md5=285e14c471893b2b683ff846a8dbe99cCAS |
Cheng, K. W., Ngan, E. S., Kang, S. K., Chow, B. K., and Leung, P. C. (2000). Transcriptional down-regulation of human gonadotropin-releasing hormone (GnRH) receptor gene by GnRH: role of protein kinase C and activating protein 1. Endocrinology 141, 3611–3622.
| Transcriptional down-regulation of human gonadotropin-releasing hormone (GnRH) receptor gene by GnRH: role of protein kinase C and activating protein 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvVGms7s%3D&md5=d85c46eee24d2e39953a83d892d23455CAS |
Ciechanowska, M., Łapot, M., Malewski, T., Misztal, T., Mateusiak, K., and Przekop, F. (2007). Effect of stress on the expression of GnRH and GnRH receptor (GnRH-R) genes in the preoptic area-hypothalamus, and GnRH-R gene in the stalk/median eminence and the anterior pituitary gland in ewes during follicular phase of the estrous cycle. Acta Neurobiol. Exp. (Warsz.) 67, 1–12.
Ciechanowska, M., Łapot, M., Malewski, T., Mateusiak, K., Misztal, T., and Przekop, F. (2008). Implication of dopaminergic system on GnRH and GnRH genes expression in the hypothalamus and GnRHR gene expression in the anterior pituitary gland of anestrous ewes. Exp. Clin. Endocrinol. Diabetes 116, 357–362.
| Implication of dopaminergic system on GnRH and GnRH genes expression in the hypothalamus and GnRHR gene expression in the anterior pituitary gland of anestrous ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOjs78%3D&md5=534d57c35ef73c48548a6f4d4b445d9fCAS |
Dardente, H., Birnie, M., Lincoln, G. A., and Hazlerigg, D. G. (2008). RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod. J. Neuroendocrinol. 20, 1252–1259.
| RFamide-related peptide and its cognate receptor in the sheep: cDNA cloning, mRNA distribution in the hypothalamus and the effect of photoperiod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlChurbP&md5=83023429df1a38e94fe240884da08848CAS |
Decourt, C., Anger, K., Robert, V., Lomet, D., Bartzen-Sprauer, J., Caraty, A., Dufourny, L., Anderson, G., and Beltramo, M. (2016). No evidence that RFamide-related peptide 3 directly modulates LH secretion in the ewe. Endocrinology 157, 1566–1575.
| No evidence that RFamide-related peptide 3 directly modulates LH secretion in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvVequ7o%3D&md5=15dde1731e87d4c209b8aea74ef3ee86CAS |
DePaolo, L. V., King, R. A., and Carollo, A. J. (1987). In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone. Endocrinology 120, 272–279.
| In vivo and in vitro examination of an autoregulatory mechanism for luteinizing hormone-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFGgsw%3D%3D&md5=24b0ab632c977d8938b24256ae41c215CAS |
Gajewska, A., Kochman, K., Lerrant, Y., Kochman, H., and Cunis, R. (2000). Modulation of luteinizing hormone subunit gene expression by intracerebroventricular microinjection of gonadotropin-releasing hormone or β-endorphin in female rats. Biochim. Biophys. Acta 1523, 217–224.
| Modulation of luteinizing hormone subunit gene expression by intracerebroventricular microinjection of gonadotropin-releasing hormone or β-endorphin in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVyqu7k%3D&md5=16f6c23d0b421b408dbf60b25e4d267fCAS |
García-Galiano, D., Pinilla, L., and Tena-Sempere, M. (2012). Sex steroids and control of the Kiss1 system: developmental roles and major regulatory action. J. Neuroendocrinol. 24, 22–33.
| Sex steroids and control of the Kiss1 system: developmental roles and major regulatory action.Crossref | GoogleScholarGoogle Scholar |
Gayrard, V., Thiéry, J. C., Thibault, J., and Tillet, Y. (1995). Efferent projections from the retrochiasmatic area to the median eminence and to the pas nervosa of the hypophysis with special reference to the A15 dopaminergic cell group in the sheep. Cell Tissue Res. 281, 561–567.
| Efferent projections from the retrochiasmatic area to the median eminence and to the pas nervosa of the hypophysis with special reference to the A15 dopaminergic cell group in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FgslWmsA%3D%3D&md5=dc55cbef83f8a6b09535ff5c3770250dCAS |
Goodman, R. L. (1996). Neural systems mediating the negative feedback actions of estradiol and progesterone in the ewe. Acta Neurobiol. Exp. (Warsz.) 56, 727–741.
| 1:STN:280:DyaK2s%2FnsFGisg%3D%3D&md5=65773e6f85c5fd6945f85e48a9f504faCAS |
Goodman, R. L., and Inskeep, E. K. (2006). The neuroendocrine control of the ovarian cycle of sheep. In ‘Knobil and Neill’s Physiology and Reproduction’. (Ed. J. D. Neill.) pp. 2389–2447. (Elsevier: Amsterdam.)
Goodman, R. L., Thiery, J. C., Delaleu, B., and Malpaux, B. (2000). Estradiol increases multi-unit activity in the A15 area of ewes exposed to inhibitory photoperiod. Biol. Reprod. 63, 1352–1357.
| Estradiol increases multi-unit activity in the A15 area of ewes exposed to inhibitory photoperiod.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCltbg%3D&md5=763a0d7d07e015371ae542600ae88aeaCAS |
Goodman, R. L., Jansen, H. T., Billings, H. J., Coolen, L. M., and Lehman, M. N. (2010). Neural systems mediating seasonal breeding in the ewe. J. Neuroendocrinol. 22, 674–681.
| 1:CAS:528:DC%2BC3cXovFejs7Y%3D&md5=c0f2fd56f444446bef63879ae4e52e76CAS |
Goodman, R. L., Maltby, M. J., Millar, R. P., Hileman, S. M., Nestor, C. C., Whited, B., Tseng, A. S., Coolen, L. M., and Lehman, M. N. (2012). Evidence that dopamine acts via kisspeptin to hold GnRH pulse frequency in check in anestrous ewes. Endocrinology 153, 5918–5927.
| 1:CAS:528:DC%2BC38XhvVahtbjK&md5=7dee8759c5e3ee88ef9f89712285d664CAS |
Gore, A. C., and Roberts, J. L. (1997). Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro. Front. Neuroendocrinol. 18, 209–245.
| Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFensbg%3D&md5=d0924957cdfd0099ba5b9a4583c7d631CAS |
Hardy, S. L., Anderson, G. M., Valent, M., Connors, J. M., and Goodman, R. L. (2003). Evidence that estrogen receptor α but not β, mediates seasonal changes in the response of the ovine retrochiasmatic area to estradiol. Biol. Reprod. 68, 846–852.
| Evidence that estrogen receptor α but not β, mediates seasonal changes in the response of the ovine retrochiasmatic area to estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGlu7Y%3D&md5=fe455c167ed99e1528db8c98aacfccceCAS |
Harris, T. G., Robinson, J. E., Evans, N. P., Skinner, D. C., and Herbison, A. E. (1998). Gonadotropin-releasing hormone messenger ribonucleic acid expression changes prior to onset of LH surge in the ewe. Endocrinology 139, 57–64.
| Gonadotropin-releasing hormone messenger ribonucleic acid expression changes prior to onset of LH surge in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFKmsQ%3D%3D&md5=fe9be0dd167f41863701791c3e30ece4CAS |
Havern, R. L., Whisnant, C. S., and Goodman, R. L. (1994). Dopaminergic structures in the ovine hypothalamus mediating estradiol negative feedback in anestrous ewes. Endocrinology 134, 1905–1914.
| Dopaminergic structures in the ovine hypothalamus mediating estradiol negative feedback in anestrous ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1Wlsbw%3D&md5=2823989f3210d48d7ead473ac7ae6385CAS |
Herbison, A. E. (1998). Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr. Rev. 19, 302–330.
| Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVWhs7c%3D&md5=aa3f6de17ac5680cb0880d9ab5c8a5d1CAS |
Herman, A. P., and Tomaszewska-Zaremba, D. (2010). Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes. Anim. Reprod. Sci. 120, 105–111.
| Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus and anterior pituitary gland of anestrous ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWrsbY%3D&md5=1092a1014b21ab5287cd2169a9ad056aCAS |
Karsch, F. J., Bittman, E. L., Foster, D. L., Goodman, R. L., Legan, S. J., and Robinson, J. E. (1984). Neuroendocrine basis of seasonal reproduction. Recent Prog. Horm. Res. 40, 185–232.
| 1:CAS:528:DyaL2cXlt1eisLs%3D&md5=f27fe26647074248c2181cad06d30f4bCAS |
Khan, A. R., and Kauffman, A. S. (2012). The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge. J. Neuroendocrinol. 24, 131–143.
| The role of kisspeptin and RFamide-related peptide-3 neurones in the circadian-timed preovulatory luteinising hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlslyitw%3D%3D&md5=67c74fb1bb6e4044520de4c927c2a678CAS |
Kirkpatrick, B. L., Esquivel, E., Moss, G. E., Hamernik, D. L., and Wise, M. E. (1998). Estradiol and gonadotropin-releasing hormone (GnRH) interact to increase GnRH receptor expression in ovariectomized ewes after hypothalamic–pituitary disconnection. Endocrine 8, 225–229.
| Estradiol and gonadotropin-releasing hormone (GnRH) interact to increase GnRH receptor expression in ovariectomized ewes after hypothalamic–pituitary disconnection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGnurw%3D&md5=3ac82062ea869245197520b06c8282f7CAS |
Kriegsfeld, L. J., Mei, D. F., Bentley, G. E., Ubuka, T., Mason, A. O., Inoue, K., Ukena, K., Tsutsui, K., and Silver, R. (2006). Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc. Natl. Acad. Sci. USA 103, 2410–2415.
| Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslGjtLw%3D&md5=e12406c8577754c2a493d760f48a1857CAS |
Kuljis, R. O., and Advis, J. P. (1989). Immunocytochemical and physiological evidence of a synapse between dopamine- and luteinizing hormone-releasing hormone-containing neurons in the ewe median eminence. Endocrinology 124, 1579–1581.
| Immunocytochemical and physiological evidence of a synapse between dopamine- and luteinizing hormone-releasing hormone-containing neurons in the ewe median eminence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVymsrg%3D&md5=5eeeca1a4157a287ae12de85588d5c3bCAS |
Lehman, M. N., and Karsch, F. J. (1993). Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and β-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the Suffolk ewe. Endocrinology 133, 887–895.
| Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and β-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the Suffolk ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtFOksro%3D&md5=19ef1551e109d56a6b6e0a5ed861cc5cCAS |
Lehman, M. N., Coolen, L. M., Goodman, R. L., Viguie, C., Billings, H. J., and Karsch, F. J. (2002). Seasonal plasticity in the brain: the use of large animal models for neuroanatomical research. Reprod. Suppl. 59, 149–165.
| 1:CAS:528:DC%2BD38XmsVajs78%3D&md5=824a72ebc7efdc9f4a4b39ec16f598d4CAS |
Lincoln, G. A., and Short, R. V. (1980). Seasonal breeding: nature’s contraceptive. Recent Prog. Horm. Res. 36, 1–52.
| 1:CAS:528:DyaL3cXmtVWmtrg%3D&md5=f3e2dd819744d176e827bf26ef1596bbCAS |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS |
Maier, T., Güell, M., and Serrano, L. (2009). Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973.
| Correlation of mRNA and protein in complex biological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFams7bJ&md5=ccfd2ca52341a1ad330c748cd62ac541CAS |
Papargiris, M. M., Rivalland, E. T. A., Clarke, I. J., Smith, J. T., Pereira, A., and Tilbrook, A. J. (2011). Evidence that RF-amide related peptide-3 is not a mediator of the inhibitory effect of psychosocial stress on gonadotrophin secretion in ovariectomised ewes. J. Neuroendocrinol. 23, 208–215.
| Evidence that RF-amide related peptide-3 is not a mediator of the inhibitory effect of psychosocial stress on gonadotrophin secretion in ovariectomised ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVahsrk%3D&md5=57c4a59e680d2fb752499e0c8d4325d8CAS |
Pau, K. F., Kuchl, D. E., and Jackson, G. L. (1982). Effect of frontal hypothalamic deafferentation on luteinizing hormone secretion and seasonal breeding in the ewe. Biol. Reprod. 27, 999–1009.
| Effect of frontal hypothalamic deafferentation on luteinizing hormone secretion and seasonal breeding in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXivValtQ%3D%3D&md5=ad9ba9c290ff002e19ee48a3fa2fcb60CAS |
Peletto, S., Bertuzzi, S., Campanella, C., Modesto, P., Maniaci, M. G., Bellino, C., Ariello, D., Quasso, A., Caramelli, M., and Acutis, P. L. (2011). Evaluation of internal genes for quantitative expression analysis by real-time PCR in ovine whole blood. Int. J. Mol. Sci. 12, 7732–7747.
| Evaluation of internal genes for quantitative expression analysis by real-time PCR in ovine whole blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Wrtr3P&md5=471c05153019c7fa2f197ea617332ce6CAS |
Poling, M. C., Quennell, J. H., Anderson, G. M., and Kauffman, A. S. (2013). Kisspeptin neurons do not directly signal to RFRP-3 neurons but RFRP-3 neurons may directly modulate a subset of hypothalamic kisspeptin cells in mice. J. Neuroendocrinol. 25, 876–886.
| Kisspeptin neurons do not directly signal to RFRP-3 neurons but RFRP-3 neurons may directly modulate a subset of hypothalamic kisspeptin cells in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVaqsrvK&md5=d7e705ca6d828201a2373e4f09bac9b3CAS |
Qi, Z., Miller, G. W., and Voit, E. O. (2009). Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals. Synapse 63, 1133–1142.
| Computational analysis of determinants of dopamine (DA) dysfunction in DA nerve terminals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1eiu7vO&md5=9e93937a2396a9838b912d1619ab1b73CAS |
Rizwan, M. Z., Poling, M. C., Corr, M., Cornes, P. A., Augustine, R. A., Quennell, J. H., Kauffman, A. S., and Anderson, G. M. (2012). RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 153, 3770–3779.
| RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGktbrN&md5=f9ce2f42de69fa4f8d67de632e0ad2f0CAS |
Robinson, J. E., Healey, A. E., Harris, T. G., Messent, A. E., Skinner, D. C., Taylor, J. A., and Evans, N. P. (2000). The negative feedback action of progesterone on luteinizing hormone release is not associated with changes in GnRH mRNA expression in the ewe. J. Neuroendocrinol. 12, 121–129.
| The negative feedback action of progesterone on luteinizing hormone release is not associated with changes in GnRH mRNA expression in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1ais7o%3D&md5=d312f946445750669768c32797bfe6fbCAS |
Sari, I. P., Rao, A., Smith, J. T., Tilbrook, A. J., and Clarke, I. J. (2009). Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes. Endocrinology 150, 5549–5556.
| Effect of RF-amide-related peptide-3 on luteinizing hormone and follicle-stimulating hormone synthesis and secretion in ovine pituitary gonadotropes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqtbrJ&md5=6764ee40cffe5c7400bf42786eaf0533CAS |
Sarkar, D. K. (1987). In vitro secretion of LHRH in ovariectomized rats is regulated by a possible autofeedback mechanism. Neuroendocrinology 45, 510–513.
| In vitro secretion of LHRH in ovariectomized rats is regulated by a possible autofeedback mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVyjtr8%3D&md5=843bc9917ad4d7c5bb1a70ebd58740cfCAS |
Skinner, D. C., and Herbison, A. E. (1997). Effects of photoperiod on estrogen receptors, tyrosin hydroxylase (TH), neuropeptide Y and β-endorphin immunoreactivity in the ewe hypothalamus. Endocrinology 138, 2585–2595.
| Effects of photoperiod on estrogen receptors, tyrosin hydroxylase (TH), neuropeptide Y and β-endorphin immunoreactivity in the ewe hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVekt70%3D&md5=afacca371502412d0a20d7a04a12ff94CAS |
Smith, J. T. (2012). The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep. Domest. Anim. Endocrinol. 43, 75–84.
| The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFOqsLY%3D&md5=5431a10de97236d4b7caa750f02efad8CAS |
Smith, J. T., Popa, S. M., Clifton, D. K., Hoffman, G. E., and Steiner, R. A. (2006). Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J. Neurosci. 26, 6687–6694.
| Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1Wlt7k%3D&md5=c37111aae02386d4a61f5c14f50be2b2CAS |
Smith, J. T., Coolen, L. M., Kriegsfeld, L. J., Sari, I. P., Jaafarzadehshirazi, M. R., Maltby, M., Bateman, K., Goodman, R. L., Tilbrook, A. J., Ubuka, T., Bentley, G. E., Clarke, I. J., and Lehman, M. N. (2008). Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in sheep. Endocrinology 149, 5770–5782.
| Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnsrbP&md5=6f3da94bc3c6fcfb9fe8c870b6173f52CAS |
Smith, J. T., Young, I. R., Veldhuis, J. D., and Clarke, I. J. (2012). Gonadotropin-inhibitory hormone (GnIH) secretion into the ovine hypophyseal portal system. Endocrinology 153, 3368–3375.
| Gonadotropin-inhibitory hormone (GnIH) secretion into the ovine hypophyseal portal system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWnsr4%3D&md5=bee6450b4b69fb51f62345220099f63bCAS |
Stupnicki, R., and Madej, A. (1976). Radioimmunoassay of LH in blood plasma of farm animals. Endokrinologie 68, 6–13.
| 1:CAS:528:DyaE2sXislClug%3D%3D&md5=6d55137465af231593103a5f168393d0CAS |
Thanky, N. R., Slater, R., and Herbison, A. E. (2003). Sex differences in estrogen-dependent transcription of gonadotropin-releasing hormone (GnRH) gene revealed in GnRH transgenic mice. Endocrinology 144, 3351–3358.
| Sex differences in estrogen-dependent transcription of gonadotropin-releasing hormone (GnRH) gene revealed in GnRH transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjsLc%3D&md5=e721ba66762dfc06e46fc607914b9f82CAS |
Thiéry, J.-C., Martin, G. B., Caldani, M., Quentin, M., Jamain, C., and Ravault, J. P. (1989). Role of hypothalamic catecholamines in the regulation of luteinizing hormone and prolactin secretion in the ewe during seasonal anestrus. Neuroendocrinology 49, 80–87.
| Role of hypothalamic catecholamines in the regulation of luteinizing hormone and prolactin secretion in the ewe during seasonal anestrus.Crossref | GoogleScholarGoogle Scholar |
Thorson, J. F., Desaulniers, A. T., Lee, C., White, B. R., Ford, J. J., and Lents, C. A. (2015). The role of RFamide-related peptide 3 (RFRP3) in regulation of the neuroendocrine reproductive and growth axes of the boar. Anim. Reprod. Sci. 159, 60–65.
| The role of RFamide-related peptide 3 (RFRP3) in regulation of the neuroendocrine reproductive and growth axes of the boar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt12it7w%3D&md5=310c26ea96d127107d8c18956908a869CAS |
Tillet, Y., Batailler, M., Krieger-Poullet, M., and Thibaunit, J. (1990). Presence of dopamine-immunoreactive cell bodies in the catecholaminergic group A15 of the sheep brain. Histochemistry 93, 327–333.
| Presence of dopamine-immunoreactive cell bodies in the catecholaminergic group A15 of the sheep brain.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7os1entA%3D%3D&md5=cd8b0a04a02c989e03698cad02f6e9f0CAS |
Tortonese, D. J. (1999). Interaction between hypothalamic dopaminergic and opioidergic systems in the photoperiodic regulation of pulsatile luteinizing hormone secretion in sheep. Endocrinology 140, 750–757.
| Interaction between hypothalamic dopaminergic and opioidergic systems in the photoperiodic regulation of pulsatile luteinizing hormone secretion in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntl2gtw%3D%3D&md5=c84211b37ba22cdcafa7cb373af2c121CAS |
Tortonese, D. J., and Lincoln, G. A. (1994). Photoperiodic modulation of the dopaminergic control of pulsatile LH secretion in sheep. J. Endocrinol. 143, 25–32.
| Photoperiodic modulation of the dopaminergic control of pulsatile LH secretion in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1antbg%3D&md5=40588b5724e518153c002ab04bd92afeCAS |
Traczyk, W., and Przekop, F. (1963). Methods of investigation of the function of hypothalamus and hypophysis in chronic experiments in sheep. Acta Physiol. Pol. 14, 217–226.
Turzillo, A. M., Nolan, T. E., and Nett, T. M. (1998). Regulation of gonadotropin-releasing hormone (GnRH) receptor gene expression in sheep: interaction of GnRH and estradiol. Endocrinology 139, 4890–4894.
| Regulation of gonadotropin-releasing hormone (GnRH) receptor gene expression in sheep: interaction of GnRH and estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ehtro%3D&md5=d61a199be7fb0b48cbc2a55fdb1adcb1CAS |
Ubuka, T., Morgan, K., Pawson, A. J., Osugi, T., Chowdhury, V. S., Minakata, H., Tsutsui, K., Millar, R. P., and Bentley, G. E. (2009). Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis. PLoS One 4, e8400.
| Identification of human GnIH homologs, RFRP-1 and RFRP-3, and the cognate receptor, GPR147 in the human hypothalamic pituitary axis.Crossref | GoogleScholarGoogle Scholar |
Viguie, C., Caraty, A., Locatelli, A., and Malpaux, B. (1995). Regulation of luteinizing hormone-releasing hormone (LHRH) secretion by melatonin in the ewe. I. Simultaneous delayed increase in LHRH and luteinizing hormone pulsatile secretion. Biol. Reprod. 52, 1114–1120.
| Regulation of luteinizing hormone-releasing hormone (LHRH) secretion by melatonin in the ewe. I. Simultaneous delayed increase in LHRH and luteinizing hormone pulsatile secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCjs78%3D&md5=7e5483547bb3b0e57e331bd08739799eCAS |
Vizcarra, J. A., Wettemann, R. P., Braden, T. D., Turzillo, A. M., and Nett, T. M. (1997). Effect of gonadotropin-releasing hormone (GnRH) pulse frequency on serum and pituitary concentrations of luteinizing hormone and follicle-stimulating hormone, GnRH receptors, and messenger ribonucleic acid for gonadotropin subunits in cows. Endocrinology 138, 594–601.
| Effect of gonadotropin-releasing hormone (GnRH) pulse frequency on serum and pituitary concentrations of luteinizing hormone and follicle-stimulating hormone, GnRH receptors, and messenger ribonucleic acid for gonadotropin subunits in cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ls1Kjsw%3D%3D&md5=a6c7f2adebc1181a38b4faae5da81ea0CAS |
Welento, J., Steyn, S., and Milart, Z. (1969). Observation on the stereotaxic configuration of the hypothalamus nuclei in sheep. Anat. Anz. 124, 1–27.
| 1:STN:280:DyaF1M3gs1Oisw%3D%3D&md5=1985cb853f30afda73d4d5131de8f40cCAS |
Yano, T., Iijima, N., Kakihara, K., Hinuma, S., Tanaka, M., and Ibata, Y. (2003). Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res. 982, 156–167.
| Localization and neuronal response of RFamide related peptides in the rat central nervous system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1aitLg%3D&md5=4e100c018d444ffe9d396f8e8350e0bbCAS |
Zhao, S., and Fernald, S. D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064.
| Comprehensive algorithm for quantitative real-time polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFemtb7K&md5=a6233b3ee88aa52fa6bb369253600e6aCAS |