Sperm gamma-aminobutyric acid type A receptor delta subunit (GABRD) and its interaction with purinergic P2X2 receptors in progesterone-induced acrosome reaction and male fertility
Wenming Xu A B E , Ke Wang A , Yan Chen A , Xiao Tong Liang A , Mei Kuen Yu C , Huanxun Yue B and M. Louise Tierney D EA Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Renmin Lanlu, 3 duan, No.17, Chengdu, 610041, PR China.
B Andrology clinic, Department of Obstetric and Gynecologic Diseases, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China.
C Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
D Membrane Physiology and Ion Channel Signalling Group, Division of Translational Bioscience, The John Curtin School of Medical Research, Building 54, Ward and Garran Roads, The Australian National University, Canberra, ACT 0200, Australia.
E Corresponding authors. Emails: xuwenming@scu.edu.cn; louise.tierney@anu.edu.au
Reproduction, Fertility and Development 29(10) 2060-2072 https://doi.org/10.1071/RD16294
Submitted: 29 July 2016 Accepted: 22 December 2016 Published: 13 February 2017
Abstract
The mechanism underlying the non-genomic action of progesterone in sperm functions and related Ca2+ mobilisation remains elusive. Herein we report the expression of gamma-aminobutyric acid type A receptor delta subunit (GABRD) in human and rodent sperm and its involvement in mediating the progesterone-induced acrosome reaction. GABRD was localised in the sperm head/neck region. A δ(392–422)-specific inhibitory peptide against GABRD blocked the progesterone-induced acrosome reaction and the associated increase in intracellular Ca2+. Similarly, an inhibitory effect against both progesterone-induced Ca2+ influx and the acrosome reaction was observed with a P2X2 receptor antagonist. The lack of synergism between the GABRD and P2X2 inhibitors suggests that these two receptors are playing a role in the same pathway. Furthermore, a co-immunoprecipitation experiment demonstrated that GABRD could undergo protein–protein interactions with the Ca2+-conducting P2X2 receptor. This interaction between the receptors could be reduced following progesterone (10 μM) inducement. Significantly reduced GABRD expression was observed in spermatozoa from infertile patients with reduced acrosome reaction capacity, suggesting that normal expression of GABRD is critical for the sperm acrosome reaction and thus male fertility. The results of the present study indicate that GABRD represents a novel progesterone receptor or modulator in spermatozoa that is responsible for the progesterone-induced Ca2+ influx required for the acrosome reaction through its interaction with the P2X2 receptor.
Additional keywords: Ca2+ mobilisation
References
Baldi, E., Luconi, M., Muratori, M., Marchiani, S., Tamburrino, L., and Forti, G. (2009). Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol. Cell. Endocrinol. 308, 39–46.| Nongenomic activation of spermatozoa by steroid hormones: facts and fictions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFant7k%3D&md5=edc7ff178d7e4f05139a8d8bf77d48baCAS |
Baldi, E., Luconi, M., Krausz, C., and Forti, G. (2011). Editorial commentary: progesterone and spermatozoa: a long-lasting liaison comes to definition. Hum. Reprod. 26, 2933–2934.
| Editorial commentary: progesterone and spermatozoa: a long-lasting liaison comes to definition.Crossref | GoogleScholarGoogle Scholar |
Baur, R., Kaur, K. H., and Sigel, E. (2010). Diversity of structure and function of α1α6β3δ GABAA receptors: comparison with α1β3δ and α6β3δ receptors. J. Biol. Chem. 285, 173 98–17 405.
| Diversity of structure and function of α1α6β3δ GABAA receptors: comparison with α1β3δ and α6β3δ receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSnur0%3D&md5=59416d1944231e7dd91093a6487600c4CAS |
Ben-Ari, Y., Gaiarsa, J.-L., Tyzio, R., and Khazipov, R. (2007). GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol. Rev. 87, 1215–1284.
| GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqu7vL&md5=12d749f1295f70544f18a266764e53afCAS |
Blackmore, P. F., Im, W. B., and Bleasdale, J. E. (1994). The cell surface progesterone receptor which stimulates calcium influx in human sperm is unlike the A ring reduced steroid site on the GABAA receptor/chloride channel. Mol. Cell. Endocrinol. 104, 237–243.
| The cell surface progesterone receptor which stimulates calcium influx in human sperm is unlike the A ring reduced steroid site on the GABAA receptor/chloride channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1ahurk%3D&md5=55ee277f2fe5220c0f51997e74cbf767CAS |
Boué-Grabot, É., Toulmé, E., Émerit, M. B., and Garret, M. (2004). Subunit-specific coupling between γ-aminobutyric acid type A and P2X2 receptor channels. J. Biol. Chem. 279, 52 517–52 525.
| Subunit-specific coupling between γ-aminobutyric acid type A and P2X2 receptor channels.Crossref | GoogleScholarGoogle Scholar |
Calogero, A. E., Burrello, N., Barone, N., Palermo, I., Grasso, U., and D’Agata, R. (2000). Effects of progesterone on sperm function: mechanisms of action. Hum. Reprod. 15, 28–45.
| Effects of progesterone on sperm function: mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVOrtr0%3D&md5=6dd7800a5604c991962bf576086bf68cCAS |
Chen, W.-Y., Ni, Y., Pan, Y.-M., Shi, Q.-X., Yuan, Y.-Y., Chen, A.-J., Mao, L.-Z., Yu, S.-Q., and Roldan, E. R. S. (2005). GABA, progesterone and zona pellucida activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa. FEBS Lett. 579, 4692–4700.
| GABA, progesterone and zona pellucida activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1ersbw%3D&md5=c9fd74746b97dec6f43d48f78dc893ffCAS |
Derossi, D., Chassaing, G., and Prochiantz, A. (1998). Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol. 8, 84–87.
| Trojan peptides: the penetratin system for intracellular delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlSlt74%3D&md5=b8edfc2aa662a51a6cd905c337af2553CAS |
Everitt, A. B., Seymour, V. A. L., Curmi, J., Laver, D. R., Gage, P. W., and Tierney, M. L. (2009). Protein interactions involving the γ2 large cytoplasmic loop of GABAA receptors modulate conductance. FASEB J. 23, 4361–4369.
| Protein interactions involving the γ2 large cytoplasmic loop of GABAA receptors modulate conductance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCgur3O&md5=14bba1d5fd6637c8de66cdc81988e5eaCAS |
Farrant, M., and Nusser, Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229.
| Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslSisLg%3D&md5=d855579bdaf4e0e86527460e1c633719CAS |
Hu, J. H., He, X. B., Wu, Q., Yan, Y. C., and Koide, S. S. (2002). Subunit composition and function of GABAA receptors of rat spermatozoa. Neurochem. Res. 27, 195–199.
| Subunit composition and function of GABAA receptors of rat spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVCis7o%3D&md5=5fefb4c8b5e641d299ccb6e648baec42CAS |
Jin, J.-Y., Chen, W.-Y., Zhou, C. X., Chen, Z.-H., Yu-Ying, Y., Ni, Y., Chan, H. C., and Shi, Q.-X. (2009). Activation of GABAA receptor/Cl− channel and capacitation in rat spermatozoa: HCO3− and Cl− are essential. Syst Biol Reprod Med 55, 97–108.
| Activation of GABAA receptor/Cl− channel and capacitation in rat spermatozoa: HCO3− and Cl− are essential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2qtLs%3D&md5=5dd2d399d452f4a52e23750b9f3c6e5bCAS |
Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., Chiba, K., and Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl Acad. Sci. USA 108, 4892–4896.
| Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktValt7s%3D&md5=c6ef4f9038a741688f0462d42b5fdb0dCAS |
Larson, J. L., and Miller, D. J. (1999). Simple histochemical stain for acrosomes on sperm from several species. Mol. Reprod. Dev. 52, 445–449.
| Simple histochemical stain for acrosomes on sperm from several species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsl2hsrk%3D&md5=a758b424a5ef8d9d87b7303a8ef8351dCAS |
Lishko, P. V., Botchkina, I. L., and Kirichok, Y. (2011). Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391.
| Progesterone activates the principal Ca2+ channel of human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKru7o%3D&md5=31af5a1b19d8776b07f40bc2b2d797b2CAS |
Luconi, M., Bonaccorsi, L., Maggi, M., Pecchioli, P., Krausz, C., Forti, G., and Baldi, E. (1998). Identification and characterization of functional nongenomic progesterone receptors on human sperm membrane. J. Clin. Endocrinol. Metab. 83, 877–885.
| 1:CAS:528:DyaK1cXivFOgs78%3D&md5=a091c216468958d321b20df9659a6ce7CAS |
Meizel, S., Turner, K. O., and Nuccitelli, R. (1997). Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction. Dev. Biol. 182, 67–75.
| Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1SjsrY%3D&md5=5654cc4b946f97290377e28c72187d0eCAS |
Mihalek, R. M., Banerjee, P. K., Korpi, E. R., Quinlan, J. J., Firestone, L. L., Mi, Z.-P., Lagenaur, C., Tretter, V., Sieghart, W., Anagnostaras, S. G., Sage, J. R., Fanselow, M. S., Guidotti, A., Spigelman, I., Li, Z., DeLorey, T. M., Olsen, R. W., and Homanics, G. E. (1999). Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice. Proc. Natl Acad. Sci. USA 96, 12 905–12 910.
| Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1yqtLw%3D&md5=a685e3a72c8112524dc4cdaaf97a9154CAS |
Miller, M. R., Mannowetz, N., Iavarone, A. T., Safavi, R., Gracheva, E. O., Smith, J. F., Hill, R. Z., Bautista, D. M., Kirichok, Y., and Lishko, P. V. (2016). Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 352, 555–559.
| Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xms1Kisb0%3D&md5=442f2a3d190c41024da30e181babef93CAS |
Modi, D. N., Shah, C., and Puri, C. P. (2007). Non-genomic membrane progesterone receptors on human spermatozoa. Soc. Reprod. Fertil. Suppl. 63, 515–529.
| 1:CAS:528:DC%2BD1cXpvVyku70%3D&md5=26d4195fb7e0c99707628208937ee6c8CAS |
Navarro, B., Miki, K., and Clapham, D. E. (2011). ATP-activated P2X2 current in mouse spermatozoa. Proc. Natl Acad. Sci. USA 108, 14 342–14 347.
| ATP-activated P2X2 current in mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFantrzI&md5=afab754a8f6aadf6e8e1faf2475a88cbCAS |
Oren-Benaroya, R., Orvieto, R., Gakamsky, A., Pinchasov, M., and Eisenbach, M. (2008). The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum. Reprod. 23, 2339–2345.
| The sperm chemoattractant secreted from human cumulus cells is progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCiu7fO&md5=ba49c1fa8521c06b9f401d8939a5a824CAS |
Pietrobon, E. O., De Los Angeles Monclus, M., Alberdi, A. J., and Fornes, M. W. (2003). Progesterone receptor availability in mouse spermatozoa during epididymal transit and capacitation: ligand blot detection of progesterone-binding protein. J. Androl. 24, 612–620.
| Progesterone receptor availability in mouse spermatozoa during epididymal transit and capacitation: ligand blot detection of progesterone-binding protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtl2itbw%3D&md5=4cda555822fddcf2c1d07693aaaf7d30CAS |
Sagare-Patil, V., Galvankar, M., Satiya, M., Bhandari, B., Gupta, S. K., and Modi, D. (2012). Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa. Int. J. Androl. 35, 633–644.
| Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlehsb7P&md5=6d6920bcb6fc7ba095f98b337c28c3f8CAS |
Schwirtlich, M., Kwakowsky, A., Emri, Z., Antal, K., Lacza, Z., Cselenyák, A., Katarova, Z., and Szabó, G. (2011). GABAergic signaling in primary lens epithelial and lentoid cells and its involvement in intracellular Ca2+ modulation. Cell Calcium 50, 381–392.
| GABAergic signaling in primary lens epithelial and lentoid cells and its involvement in intracellular Ca2+ modulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GrsLfN&md5=63bba81cacb4bd7d2028fb08868bfbf6CAS |
Seymour, V. A. L., Curmi, J. P., Howitt, S. M., Casarotto, M. G., Laver, D. R., and Tierney, M. L. (2012). Selective modulation of different GABAA receptor isoforms by diazepam and etomidate in hippocampal neurons. Int. J. Biochem. Cell Biol. 44, 1491–1500.
| Selective modulation of different GABAA receptor isoforms by diazepam and etomidate in hippocampal neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVektLvM&md5=62034d78664236e4be09cbfa3480ccc9CAS |
Shrivastava, A. N., Triller, A., Sieghart, W., and Sarto-Jackson, I. (2011). Regulation of GABAA receptor dynamics by interaction with purinergic P2X2 receptors. J. Biol. Chem. 286, 14 455–14 468.
| Regulation of GABAA receptor dynamics by interaction with purinergic P2X2 receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslWisL4%3D&md5=e0ce26088cbdaeedbf964fbc40945141CAS |
Strünker, T., Goodwin, N., Brenker, C., Kashikar, N. D., Weyand, I., Seifert, R., and Kaupp, U. B. (2011). The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471, 382–386.
| The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm.Crossref | GoogleScholarGoogle Scholar |
Sun, T. T., Chung, C. M., and Chan, H. C. (2011). Acrosome reaction in the cumulus oophorus revisited: involvement of a novel sperm-released factor NYD-SP8. Protein Cell 2, 92–98.
| Acrosome reaction in the cumulus oophorus revisited: involvement of a novel sperm-released factor NYD-SP8.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFSrsr4%3D&md5=5c17d5b3be4fffab907ba1b276f19ab0CAS |
Tamburrino, L., Marchiani, S., Minetti, F., Forti, G., Muratori, M., and Baldi, E. (2014). The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Hum. Reprod. 29, 418–428.
| The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Chtrw%3D&md5=e81ff010f7504993278a42bacf7136e0CAS |
Tanii, I., Aradate, T., Matsuda, K., Komiya, A., and Fuse, H. (2011). PACAP-mediated sperm–cumulus cell interaction promotes fertilization. Reproduction 141, 163–171.
| PACAP-mediated sperm–cumulus cell interaction promotes fertilization.Crossref | GoogleScholarGoogle Scholar |
Thomas, P. (2008). Characteristics of membrane progestin receptor alpha (mPRα) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front. Neuroendocrinol. 29, 292–312.
| Characteristics of membrane progestin receptor alpha (mPRα) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVeiurg%3D&md5=749b91f5f36441bcab0e4998c3075560CAS |
Vigil, P., Orellana, R. F., and Cortes, M. E. (2011). Modulation of spermatozoon acrosome reaction. Biol. Res. 44, 151–159.
| Modulation of spermatozoon acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWksLnL&md5=ea29a4a46b5a124e2a7863c38f1066daCAS |
Wang, M. (2011). Neurosteroids and GABA-A receptor function. Front. Endocrinol. (Lausanne) 2, 44.
| Neurosteroids and GABA-A receptor function.Crossref | GoogleScholarGoogle Scholar |
Witte, T. S., and Schafer-Somi, S. (2007). Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa. Anim. Reprod. Sci. 102, 181–193.
| Involvement of cholesterol, calcium and progesterone in the induction of capacitation and acrosome reaction of mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKiurvN&md5=05c2bfaf8c62b16b618a793aae970517CAS |
World Health Organization (2010). ‘WHO laboratory manual for the examination and processing of human semen.’ (WHO press: Geneva.)
Xia, J., and Ren, D. (2009). Egg coat proteins activate calcium entry into mouse sperm via CatSper channels. Biol. Reprod. 80, 1092–1098.
| Egg coat proteins activate calcium entry into mouse sperm via CatSper channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGmsrc%3D&md5=3d2f1e8c3cce000fe7342e43cf85e4daCAS |
Xu, W. M., Shi, Q. X., Chen, W. Y., Zhou, C. X., Ni, Y., Rowlands, D. K., Liu, G. Y., Zhu, H., Ma, Z. G., Wang, X. F., Chen, Z. H., Zhou, S. C., Dong, H. S., Zhang, X. H., Chung, Y. W., Yuan, Y. Y., Yang, W. X., and Chan, H. C. (2007). Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc. Natl Acad. Sci. USA 104, 9816–9821.
| Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFSmsbw%3D&md5=b413713fe36961a20bfe5b1ece132d5dCAS |
Yin, L., Chung, C. M., Huo, R., Liu, H., Zhou, C., Xu, W., Zhu, H., Zhang, J., Shi, Q., Wong, H. Y. C., Chen, J., Lu, Y., Bi, Y., Zhao, C., Du, Y., Ma, M., Cai, Y., Chen, W. Y., Fok, K. L., Tsang, L. L., Li, K., Ni, Y., Chung, Y. W., Zhou, Z., Sha, J., and Chan, H. C. (2009). A sperm GPI-anchored protein elicits sperm-cumulus cross-talk leading to the acrosome reaction. Cell. Mol. Life Sci. 66, 900–908.
| A sperm GPI-anchored protein elicits sperm-cumulus cross-talk leading to the acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVOku7s%3D&md5=b21cf436dce5899a8d34d081f6f4c900CAS |