Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Extracellular-like matrices and leukaemia inhibitory factor for in vitro culture of human primordial follicles

Assiel J. Younis A B , Galit Lerer-Serfaty A B , Dana Stav A B , Bethsabee Sabbah A B F , Tzippy Shochat C , Gania Kessler-Icekson B D , Muayad A. Zahalka B D , Michal Shachar-Goldenberg E , Avi Ben-Haroush A B , Benjamin Fisch A B and Ronit Abir A B G
+ Author Affiliations
- Author Affiliations

A Infertility and IVF Unit, Beilinson Women Hospital, Rabin Medical Center, 39 Jabotinski Street, Petach Tikva 49100, Israel.

B Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, PO Box 39040, Tel Aviv, Israel.

C Statistical Consulting Unit, Beilinson Hospital, Rabin Medical Center, 39 Jabotinski Street, Petach Tikva 49100, Israel.

D The Felsenstein Medical Research Center, Rabin Medical Center, 39 Jabotinski Street, Petach Tikva 49100, Israel.

E Sami Shamoon College of Engineering, PO Box 950, Beer-Sheva 84100, Israel.

F Present address: Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461, USA.

G Corresponding author. Email: ronita@clalit.org.il

Reproduction, Fertility and Development 29(10) 1982-1994 https://doi.org/10.1071/RD16233
Submitted: 5 June 2016  Accepted: 24 November 2016   Published: 1 February 2017

Abstract

The possibility of maturing human primordial follicles in vitro would assist fertility restoration without the danger of reseeding malignancies. Leukaemia inhibitory factor (LIF) and certain culture matrices may promote human follicular growth. The present study compared human primordial follicular growth on novel culture matrices, namely human recombinant vitronectin (hrVit), small intestine submucosa (SIS), alginate scaffolds and human recombinant virgin collagen bioengineered in tobacco plant lines (CollPlant). The frozen–thawed ovarian samples that were used had been obtained from girls or young women undergoing fertility preservation. In the first part of the study, 20 samples were cultured for 6 days on hrVit or SIS with basic culture medium alone or supplemented with one of two concentrations of LIF (10 ng mL–1 and 100 ng mL–1), with and without LIF-neutralising antibody. In the second part of the study, 15 samples were cultured for 6 days on alginate scaffolds or CollPlant matrices with basic culture medium. Follicular development was assessed by follicular counts and classification, Ki67 immunohistochemistry and 17β-oestradiol and anti-Müllerian hormone measurements in spent media samples. Primordial follicular growth was not enhanced by LIF. Despite some significant differences among the four matrices, none appeared to have a clear advantage, apart from significantly more Ki67-stained follicles on alginate and CollPlant matrices. Further studies of other culture matrices and medium supplements are needed to obtain an optimal system.

Additional keywords: alginate scaffolds, anti-Müllerian hormone (AMH), CollPlant matrices, human recombinant vitronectin (hrVit), 17β-oestradiol, small intestinal submucosa (SIS).


References

Abir, R., Franks, S., Mobberley, M. A., Moore, P. A., Margara, R. A., and Winston, R. M. (1997). Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil. Steril. 68, 682–688.
Mechanical isolation and in vitro growth of preantral and small antral human follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FgtVyiug%3D%3D&md5=88924316256a620f37b230175d86c986CAS |

Abir, R., Fisch, B., Nitke, S., Okon, E., Raz, A., and Ben Rafael, Z. (2001). Morphological study of fully and partially isolated early human follicles. Fertil. Steril. 75, 141–146.
Morphological study of fully and partially isolated early human follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzitF2jsA%3D%3D&md5=09d7ffccadc86099c5cff28caadbb068CAS |

Abir, R., Fisch, B., Barnnet, M., Freimann, S., Van den Hurk, R., Feldberg, D., Nitke, S., Krissi, H., and Ao, A. (2004). Immunocytochemical detection and RT-PCR expression of leukaemia inhibitory factor and its receptor in human fetal and adult ovaries. Mol. Hum. Reprod. 10, 313–319.
Immunocytochemical detection and RT-PCR expression of leukaemia inhibitory factor and its receptor in human fetal and adult ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1ejsr8%3D&md5=43f62da1fa74415c30d39a3b1ff39b3bCAS |

Abir, R., Nitke, S., Ben-Haroush, A., and Fisch, B. (2006). In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol. Histopathol. 21, 887–898.
| 1:CAS:528:DC%2BD28XhtF2gsLfL&md5=b739cb1be8a72ffafe2bd171ae26be27CAS |

Abir, R., Aviram, A., Feinmesser, M., Stein, J., Yaniv, I., Parnes, D., Ben-Haroush, A., Meirow, D., Rabizadeh, E., and Fisch, B. (2014). Ovarian minimal residual disease in chronic myeloid leukaemia. Reprod. Biomed. Online 28, 255–260.
Ovarian minimal residual disease in chronic myeloid leukaemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVShsLnK&md5=e2c9dc837981c46c8e06449b8806521bCAS |

Anderson, R. A., McLaughlin, M., Wallace, W. H., Albertini, D. F., and Telfer, E. E. (2014). The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Hum. Reprod. 29, 97–106.
The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c%2Fnt1Kruw%3D%3D&md5=759e18459811130c2a58161a9564674cCAS |

Braam, S. R., Zeinstra, L., Litjens, S., Ward-Van Oostwaard, D., Van den Brink, S., Van Laake, L., Lebrin, F., Kats, P., Hochstenbach, R., Passier, R., Sonnenberg, A., and Mummery, C. L. (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem Cells 26, 2257–2265.
Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aqtrvP&md5=01defc691b09e4773bc86d6758e9a435CAS |

Celik, O., Esrefoglu, M., Hascalik, S., Gul, M., Tagluk, M. E., Elter, K., and Aydin, E. (2009). Use of porcine small intestinal submucosa to reconstruct an ovarian defect. Int. J. Gynaecol. Obstet. 106, 218–222.
Use of porcine small intestinal submucosa to reconstruct an ovarian defect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSjsr%2FM&md5=052516b12e5b4ad93cc7aab182dc2ed9CAS |

Dahéron, L., Optiz, S. L., Zaehres, H., Lensch, M. W., Andrews, P. W., Itskovitz-Eldor, J., and Daley, G. Q. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778.
LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar |

da Nóbrega, J. E., Goncalves, P. B., Chaves, R. N., Maglhaes Dde, M., Rossetto, R., Lima-Verde, I. B., Pereira, G. R., Campello, C. C., Fiqueiredo, J. R., and de Oliveira, J. F. (2012). Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro. Zygote 20, 73–78.
Leukemia inhibitory factor stimulates the transition of primordial to primary follicle and supports the goat primordial follicle viability in vitro.Crossref | GoogleScholarGoogle Scholar |

Decanter, C., Peigne, M., Malliiez, A., Morschhauser, F., Dassonnevile, A., Dewailly, D., and Pigny, P. (2014). Toward a better follow-up of ovarian recovery in young women after chemotherapy with a hypersensitive antimullerian hormone assay. Fertil. Steril. 102, 483–487.
Toward a better follow-up of ovarian recovery in young women after chemotherapy with a hypersensitive antimullerian hormone assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVemsbrF&md5=37e6c85e5a075f741f5443427d0507fcCAS |

Echevarria, T. J., Chow, S., Watson, S., Wakefield, D., and Di Girolamo, N. (2011). Vitronectin: a matrix support factor for human limbal epithelial progenitor cells. Invest. Ophthalmol. Vis. Sci. 52, 8138–8147.
Vitronectin: a matrix support factor for human limbal epithelial progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVKn&md5=4100b35be454bace39a35b70816d94a2CAS |

Feigin, E., Freud, E., Fisch, B., Orvieto, R., Kravarusic, D., Avrahami, G., Ben Haroush, A., and Abir, R. (2008). Fertility preservation in female adolescents with malignancies. In ‘Cancer in Female Adolescents’. (Ed. M. T. Moorland.) pp. 103–138. (Nova Science Publishers: Hauppauge, NY).

Gearing, D. P., Druck, T., Huebner, K., Overhauser, J., Gilbert, D. J., Copeland, N. G., and Jenkins, N. A. (1993). The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5p12-p13. Genomics 18, 148–150.
The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5p12-p13.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFWjtLg%3D&md5=67fbcd5f7c3dc88473ae5408bd711078CAS |

Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M. K., Itskovitz-Eldor, J., and Rao, M. S. (2004). Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380.
Differences between human and mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVaqurg%3D&md5=37a630e4a4ba203ec579948a73de5f38CAS |

Gougeon, A. (1996). Regulations of ovarian follicular development in primates: facts and hypotheses. Endocr. Rev. 17, 121–155.
Regulations of ovarian follicular development in primates: facts and hypotheses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislGisbc%3D&md5=9274881c19fdedc94c4dd78eb611fa1fCAS |

Hirao, Y., Nagai, T., Kubo, M., Miyano, T., Miyake, M., and Kato, S. (1994). In vitro growth and maturation of pig oocytes. J. Reprod. Fertil. 100, 333–339.
In vitro growth and maturation of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3ptlaitw%3D%3D&md5=72a68d9610f607b3483351ddbef28e09CAS |

Hovatta, O., Silye, R., Abir, R., Krausz, T., and Winston, R. M. (1997). Extracellular matrix improves the survival of human primordial and primary fresh and frozen–thawed ovarian follicles in long-term culture. Hum. Reprod. 12, 1032–1036.
Extracellular matrix improves the survival of human primordial and primary fresh and frozen–thawed ovarian follicles in long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szjsl2qsg%3D%3D&md5=0d8b9e0a0a1da39dfaec17992eab211eCAS |

Hsueh, A. J., Kawamura, K., Cheng, Y., and Fauser, B. C. (2015). Intraovarian control of early folliculogenesis. Endocr. Rev. 36, 1–24.
Intraovarian control of early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Shsrg%3D&md5=c8174dc71314800dca5464e6b4543d50CAS |

Itoh, T., Kacchi, M., Abe, H., Sendai, Y., and Hoshi, H. (2002). Growth, antrum formation and esteradiol production of bovine preantral follicles cultured in a serum-free medium. Biol. Reprod. 67, 1099–1105.
Growth, antrum formation and esteradiol production of bovine preantral follicles cultured in a serum-free medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rtr4%3D&md5=9c66edba899df1483512657166ca1018CAS |

Jin, S. Y., Lei, L., Shikanov, A., Shea, L. D., and Woodruff, T. K. (2010). A novel two-step strategy for in vitro culture of early stage ovarian follicles in the mouse. Fertil. Steril. 93, 2633–2639.
A novel two-step strategy for in vitro culture of early stage ovarian follicles in the mouse.Crossref | GoogleScholarGoogle Scholar |

Kedem, A., Hourvitz, A., Fisch, B., Shachar, M., Cohen, S., Ben-Haroush, A., Dor, J., Freud, E., Felz, C., and Abir, R. (2011). Alginate scaffold for organ culture of cryopreserved–thawed human ovarian cortical follicles. J. Assist. Reprod. Genet. 28, 761–769.
Alginate scaffold for organ culture of cryopreserved–thawed human ovarian cortical follicles.Crossref | GoogleScholarGoogle Scholar |

Komatsu, K., Koya, T., Wang, J., Wamashita, M., Kikkawa, F., and Iwase, A. (2015). Analysis of the effect of leukemia inhibitory factor on follicular growth in cultured murine ovarian tissue. Biol. Reprod. 93, 18.
Analysis of the effect of leukemia inhibitory factor on follicular growth in cultured murine ovarian tissue.Crossref | GoogleScholarGoogle Scholar |

Kossowska-Tomaszczuk, K., Pelczar, P., Güven, S., Kowalski, J., Volpi, E., De Geyter, C., and Scherberich, A. (2010). A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment. Tissue Eng. Part A 16, 2063–2073.
A novel three-dimensional culture system allows prolonged culture of functional human granulosa cells and mimics the ovarian environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslGhsrg%3D&md5=47661743d03a0b559e81e4dbf413ba91CAS |

La Marca, A., Sighinolfi, G., Radi, D., Argento, C., Baraldi, E., Artenisio, A. C., Stabile, G., and Volpe, A. (2010). Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum. Reprod. Update 16, 113–130.
Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKntb4%3D&md5=7f7d196971be87d16aaddf180e23d66eCAS |

Lande, Y., Fisch, B., Tsur, A., Farhi, J., Prag-Rosenberg, R., Ben-Haroush, A., Kessler-Icekson, G., Zahalka, M. A., Ludeman, S. M., and Abir, R. (2017). Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro. Reprod. Biomed. Online 34, 104–114.
Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCktbvF&md5=e5f31d6c194d7fb4c35ef47b79f58fd4CAS |

Lerer-Serfaty, G., Samara, N., Fisch, B., Shachar, M., Kossover, O., Seliktar, D., Ben-Haroush, A., and Abir, R. (2013). Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol–trisphosphate-enhancing substances to organ culture of human primordial follicles. J. Assist. Reprod. Genet. 30, 1279–1288.
Attempted application of bioengineered/biosynthetic supporting matrices with phosphatidylinositol–trisphosphate-enhancing substances to organ culture of human primordial follicles.Crossref | GoogleScholarGoogle Scholar |

Loret de Mola, J. R., Barnhart, K., Kopf, G. S., Heyner, S., Garside, W., and Coutifaris, C. B. (2004). Comparison of two culture systems for the in-vitro growth and maturation of mouse preantral follicles. Clin. Exp. Obstet. Gynecol. 31, 15–19.
| 1:STN:280:DC%2BD2c7gslynuw%3D%3D&md5=d9955fadf665a702accc190ca3c03389CAS |

Luz, V. B., Santos, R., Araujo, V. R., Celestino, J. J., Magalhaes-Padilha, D. M., Chaves, R. N., Brito, I. R., Silva, T. F., Almeida, A. P., Campello, C. C., and Fiqueiredo, J. R. (2012). The effect of LIF in the absence or presence of FSH on the in vitro development of isolated caprine preantral follicles. Reprod. Domest. Anim. 47, 379–384.
The effect of LIF in the absence or presence of FSH on the in vitro development of isolated caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVKmt7Y%3D&md5=cccd0c1c836f8165228c7519dddf7b82CAS |

Lyrakou, S., Hulten, M. A., and Hartshorne, G. M. (2002). Growth factors promote meiosis in mouse fetal ovaries in vitro. Mol. Hum. Reprod. 8, 906–911.
Growth factors promote meiosis in mouse fetal ovaries in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFWnsLo%3D&md5=5cca27df54e6517a9e77eb52c64d79c0CAS |

McLaughlin, M., and Telfer, E. E. (2010). Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system. Reproduction 139, 971–978.
Oocyte development in bovine primordial follicles is promoted by activin and FSH within a two-step serum-free culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns12qsLk%3D&md5=821c6bfb2068077d68f39c89ff045c86CAS |

Nilsson, E. E., Kezel, P., and Skinner, M. K. (2002). Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol. 188, 65–73.
Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFWntrw%3D&md5=c320cdb43b17d4be0a4e61ade556eaa2CAS |

O’Brien, M. J., Pendola, J. K., and Eppig, J. J. (2003). A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol. Reprod. 68, 1682–1686.
A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltrY%3D&md5=a590a0f35f8c05c4393345381a3f539bCAS |

Schmidt, K. L., Byskov, A. G., Nyboe-Andersen, A., Müller, J., and Yding Andersen, C. (2003). Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum. Reprod. 18, 1158–1164.
Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s3kvFyrtA%3D%3D&md5=9a10400a00fbe69d0f69c640b0b546dbCAS |

Silber, S. (2016). Ovarian tissue cryopreservation and transplantation: scientific implications. J. Assist. Reprod. Genet. 33, 1595–1603.
Ovarian tissue cryopreservation and transplantation: scientific implications.Crossref | GoogleScholarGoogle Scholar |

Stein, H., Wilensky, M., Tsafrir, Y., Rosenthal, M., Amir, R., Avraham, T., Ofir, K., Dgany, O., Yayon, A., and Shoseyov, O. (2009). Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. Biomacromolecules 10, 2640–2645.
Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvV2nt7w%3D&md5=b6f59f63ef06abdbcc460f4e5929ef76CAS |

Telfer, E. E., McLaughlin, M., Ding, C., and Thong, K. J. (2008). A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum. Reprod. 23, 1151–1158.
A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1ags7o%3D&md5=76f8822510de1174df25e85bfd3b8323CAS |

Tian, X. H., Xue, W. J., Pang, X. L., Teng, Y., Tian, P. X., and Feng, X. S. (2005). Effect of small intestinal submucosa on islet recovery and function in vitro culture. Hepatobiliary Pancreat. Dis. Int. 4, 524–529.

Torrance, C., Telfer, E., and Gosden, R. G. (1989). Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture. J. Reprod. Fertil. 87, 367–374.
Quantitative study of the development of isolated mouse pre-antral follicles in collagen gel culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7ls1ajsA%3D%3D&md5=b6b1b7ec20cebf0cffd01e492851b1a6CAS |

Xu, M., Barrett, S. L., West-Farrell, E., Kondapalli, L. A., Kiesewetter, S. E., Shea, L. D., and Woodruff, T. K. (2009). In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 24, 2531–2540.
In vitro grown human ovarian follicles from cancer patients support oocyte growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqurnE&md5=a2481387bf9da9c070f715f1b11e8c6fCAS |

Zhang, Y., Kropp, B. P., Moore, P., Cowan, R., Furness, P. D., Kolligian, M. E., Frey, P., and Cheng, E. Y. (2000). Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J. Urol. 164, 928–935.
Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvjtVWgsA%3D%3D&md5=13050a2cd043db6ffe62b941d05ea1c6CAS |