Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

GRIM-19, a gene associated with retinoid-interferon-induced mortality, affects endometrial receptivity and embryo implantation

Yang Yang A , Yanyan Sun A , Laiyang Cheng A , Anna Li A , Yanjun Shen A , Ligang Jiang A , Xiaohui Deng A and Lan Chao A B
+ Author Affiliations
- Author Affiliations

A Infertility Center, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China.

B Corresponding author. Email: qlszcl@163.com

Reproduction, Fertility and Development 29(7) 1447-1455 https://doi.org/10.1071/RD16104
Submitted: 2 March 2016  Accepted: 7 June 2016   Published: 27 June 2016

Abstract

GRIM-19 is associated with apoptosis, abnormal proliferation, immune tolerance and malignant transformation, and it also plays an important role in early embryonic development. Although the homologous deletion of GRIM-19 causes embryonic lethality in mice, the precise role of GRIM-19 in embryo implantation has not been elucidated. Here we show that GRIM-19 plays an important role in endometrial receptivity and embryo implantation. Day 1 to Day 6 pregnant mouse uteri were collected. Immunohistochemistry studies revealed the presence of GRIM-19 on the luminal epithelium and glandular epithelium throughout the implantation period in pregnant mice. The protein and mRNA levels of GRIM-19 were markedly decreased on Day 4 of pregnancy in pregnant mice, but there was no change in GRIM-19 levels in a group of pseudopregnant mice. Overexpression of GRIM-19 decreased the adhesion rate of RL95–2–BeWo co-cultured spheroids and increased apoptosis. Furthermore, STAT3 and IL-11 mRNA and protein levels were reduced by overexpressing GRIM-19, but protein and mRNA levels of TNF-α were increased. These findings indicate the involvement of GRIM-19 in the embryo implantation process by regulating adhesion, apoptosis and immune tolerance.

Additional keywords: adhesion, apoptosis, immune tolerance.


References

Alchanati, I., Nallar, S. C., Sun, P., Gao, L., Hu, J., Stein, A., Yakirevich, E., Konforty, D., Alroy, I., Zhao, X., Reddy, S. P., Resnick, M. B., and Kalvakolanu, D. V. (2006). A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 25, 7138–7147.
A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SrtbvP&md5=f61d186fe4dc3879ce2fa30cf3d99a12CAS | 16732315PubMed |

Angell, J. E., Lindner, D. J., Shapiro, P. S., Hofmann, E. R., and Kalvakolanu, D. V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J. Biol. Chem. 275, 33416–33426.
Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVOqu7g%3D&md5=1535df3edafb06818e0b7dbbc9301c33CAS | 10924506PubMed |

Banerjee, P., and Fazleabas, A. (2010). Endometrial responses to embryonic signals in the primate. International Journal of Developmental Biology 54, 295–302.
Endometrial responses to embryonic signals in the primate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVajtb4%3D&md5=bd70124689bbd505469155dd20792bfeCAS | 19876822PubMed |

Barnich, N., Hisamatsu, T., Aguirre, J. E., Xavier, R., Reinecker, H.-C., and Podolsky, D. K. (2005). GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J. Biol. Chem. 280, 19021–19026.
| 1:CAS:528:DC%2BD2MXjvFersr4%3D&md5=76db5b392e843cadeaa109ff6ebbae16CAS | 15753091PubMed |

Buettner, R., Mora, L., and Jove, R. (2002). Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945–954.
| 1:CAS:528:DC%2BD38XjsF2lsb4%3D&md5=6dd5818473276a7810ba13889675a3e6CAS | 11948098PubMed |

Corvinus, F. M., Fitzgerald, J. S., Friedrich, K., and Markert, U. R. (2003). Evidence for a correlation between trophoblast invasiveness and STAT3 activity. Am. J. Reprod. Immunol. 50, 316–321.
Evidence for a correlation between trophoblast invasiveness and STAT3 activity.Crossref | GoogleScholarGoogle Scholar | 14672334PubMed |

Dey, S. K., Lim, H., Das, S. K., Reese, J., Paria, B. C., Daikoku, T., and Wang, H. (2004). Molecular cues to implantation. Endocr. Rev. 25, 341–373.
Molecular cues to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVeltL8%3D&md5=b5def986fe7f1ca3d09aa5965a75ff4fCAS | 15180948PubMed |

Dimitriadis, E., Sharkey, A., Tan, Y., Salamonsen, L., and Sherwin, J. (2007). Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window. Reprod. Biol. Endocrinol. 5, 44.
Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window.Crossref | GoogleScholarGoogle Scholar | 18047677PubMed |

Duprez, L., Takahashi, N., Van Hauwermeiren, F., Vandendriessche, B., Goossens, V., Vanden Berghe, T., Declercq, W., Libert, C., Cauwels, A., and Vandenabeele, P. (2011). RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918.
RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KrtrfJ&md5=52035640b72a7e089cfc692f084d8f05CAS | 22195746PubMed |

Fukada, T., Hibi, M., Yamanaka, Y., Takahashi, T., Fujitani, Y., Yamaguchi, T., Nakajima, K., and Hirano, T. (1996). Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5, 449–460.
Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xntleju70%3D&md5=24c8c66e67d09b01747e2d4b16ccb421CAS | 8934572PubMed |

He, X., Zhou, A., Lu, H., Chen, Y., Huang, G., Yue, X., Zhao, P., and Wu, Y. (2013). Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One 8, e61677.
Suppression of mitochondrial complex I influences cell metastatic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVWhtbg%3D&md5=cdce939af28ed6f70f6a848df9766c7fCAS | 23630608PubMed |

Heinrich, P. C., Behrmann, I., Müller-Newen, G., Schaper, F., and Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314.
Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFOls7c%3D&md5=6131461ab471d3affdc1cf5c64a160aaCAS | 9716487PubMed |

Ho, H., Singh, H., Aljofan, M., and Nie, G. (2012). A high-throughput in vitro model of human embryo attachment. Fertil. Steril. 97, 974–978.
A high-throughput in vitro model of human embryo attachment.Crossref | GoogleScholarGoogle Scholar | 22341638PubMed |

Huang, G. (2004). GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell. Biol. 24, 8447–8456.
GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVakt7o%3D&md5=48f2803b9ae1df6563d61c871451fa5cCAS | 15367666PubMed |

Kalakonda, S., Nallar, S. C., Gong, P., Lindner, D. J., Goldblum, S. E., Reddy, S. P., and Kalvakolanu, D. V. (2007). Tumor suppressive protein gene associated with retinoid-interferon-induced mortality (GRIM)-19 inhibits src-induced oncogenic transformation at multiple levels. Am. J. Pathol. 171, 1352–1368.
Tumor suppressive protein gene associated with retinoid-interferon-induced mortality (GRIM)-19 inhibits src-induced oncogenic transformation at multiple levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Smtr3F&md5=5763c5d42d396aaebf42fffb39ee0f0fCAS | 17823279PubMed |

Kalvakolanu, D. (2004). The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth suppression. Cytokine Growth Factor Rev. 15, 169–194.
The GRIMs: a new interface between cell death regulation and interferon/retinoid induced growth suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVWmsr0%3D&md5=dd27e3c2c784ad9eb6c62982ed875238CAS | 15110800PubMed |

Kong, D., Zhao, L., Du, Y., He, P., Zou, Y., Yang, L., Sun, L., Wang, H., Xu, D., Meng, X., and Sun, X. (2014). Overexpression of GRIM-19, a mitochondrial respiratory chain complex I protein, suppresses hepatocellular carcinoma growth. Int. J. Clin. Exp. Pathol. 7, 7497–7507.
| 25550785PubMed |

Lessey, B. A. (2000). The role of the endometrium during embryo implantation. Hum. Reprod. 15, 39–50.
| 11261482PubMed |

Lu, H., and Cao, X. (2008). GRIM-19 is essential for maintenance of mitochondrial membrane potential. Mol. Biol. Cell 19, 1893–1902.
GRIM-19 is essential for maintenance of mitochondrial membrane potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslelsrs%3D&md5=1c2b8557299215353b4063789ab4b32eCAS | 18287540PubMed |

Ma, W., Song, H., Das, S. K., Paria, B. C., and Dey, S. K. (2003). Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc. Natl. Acad. Sci. USA 100, 2963–2968.
Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVaiu7w%3D&md5=b1fecf942acd037e4501c57592aafc12CAS | 12601161PubMed |

Marwood, M., Visser, K., Salamonsen, L. A., and Dimitriadis, E. (2009). Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology 150, 2915–2923.
Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjsrs%3D&md5=18fb2c181eec482629105d2969bfb5afCAS | 19213836PubMed |

Moon, Y. M., Lee, J., Lee, S. Y., Her, Y. M., Ryu, J. G., Kim, E. K., Son, H. J., Kwok, S. K., Ju, J. H., Yang, C. W., Park, S. H., Kim, H. Y., and Cho, M. L. (2014). Gene associated with retinoid-interferon-induced mortality 19 attenuates murine autoimmune arthritis by regulation of th17 and treg cells. Arthritis Rheumatol. 66, 569–578.
Gene associated with retinoid-interferon-induced mortality 19 attenuates murine autoimmune arthritis by regulation of th17 and treg cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtl2gt7zF&md5=77c25c20921a4b2c434dce6c6be0277fCAS | 24574216PubMed |

Moulton, B. C. (1994). Transforming growth factor-beta stimulates endometrial stromal apoptosis in vitro. Endocrinology 134, 1055–1060.
| 1:CAS:528:DyaK2cXitV2nsLs%3D&md5=7330fcb67d4eb461eb2d77729c9bd38aCAS | 8119142PubMed |

Nielsen, M., Kaestel, C. G., Eriksen, K. W., Woetmann, A., Stokkedal, T., Kaltoft, K., Geisler, C., Röpke, C., and Odum, N. (1999). Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 13, 735–738.
Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1aktbY%3D&md5=1d604a1eca3fc8925e8cdd22b767ce94CAS | 10374878PubMed |

Robertson, S. A. (2000). Control of the immunological environment of the uterus. Rev. Reprod. 5, 164–174.
Control of the immunological environment of the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1altb8%3D&md5=5eee1c0d472af942565f76137cf91923CAS | 11006166PubMed |

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.
Analyzing real-time PCR data by the comparative C(T) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=c9af4cd1fb90fdc7f3a7e145ccaafe84CAS | 18546601PubMed |

Seo, T., Lee, D., Shim, Y., Angell, J., Chidambaram, N., Kalvakolanu, D., and Choe, J. (2002). Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J. Virol. 76, 8797–8807.
Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1eru70%3D&md5=6ea36b6413b8a7626f65ab1c04540bd0CAS | 12163600PubMed |

Sutherland, A. E., Calarco, P. G., and Damsky, C. H. (1993). Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186.
| 1:CAS:528:DyaK2cXitFemsLk%3D&md5=7a5be1a8603d8f0961e02ab8aefa84e7CAS | 8306881PubMed |

van Mourik, M. S., Macklon, N. S., and Heijnen, C. J. (2009). Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J. Leukoc. Biol. 85, 4–19.
Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1yqtA%3D%3D&md5=3de82d569c3a1855001be0a52a3706c8CAS | 18784344PubMed |

Vanlangenakker, N., Bertrand, M., Bogaert, P., Vandenabeele, P., and Vanden Berghe, T. (2011). TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230.
TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38%2FgsFeisg%3D%3D&md5=5746e6b6181de476a86ee4753ffdcdafCAS | 22089168PubMed |

Wang, H. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199.
Roadmap to embryo implantation: clues from mouse models.Crossref | GoogleScholarGoogle Scholar | 16485018PubMed |

Wang, J., Deng, X., Yang, Y., Yang, X., Kong, B., and Chao, L. (2016). Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis. Fertil. Steril. 105, 1093–1101.
Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFKgtrY%3D&md5=464e93a2b987e1f783a990f6703864f4CAS | 26769301PubMed |

Yeo, W. M., Isegawa, Y., and Chow, V. T. (2008). The U95 protein of human herpesvirus 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential. J. Virol. 82, 1011–1020.
The U95 protein of human herpesvirus 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFCrsw%3D%3D&md5=f4bbff857af86b2d54efbc9c618258cfCAS | 17928352PubMed |

Zhang, L., Gao, L., Li, Y., Lin, G., Shao, Y., Ji, K., Yu, H., Hu, J., Kalvakolanu, D. V., Kopecko, D. J., Zhao, X., and Xu, D. Q. (2008). Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth. Clin. Cancer Res. 14, 559–568.
Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKhsbw%3D&md5=35b7f4b134718d1ea933a99576fd3846CAS | 18223232PubMed |