Cryobiology: principles, species conservation and benefits for coral reefs
Mary Hagedorn A B C and Virginia L. Carter AA Center for Species Survival, Smithsonian Conservation Biology Institute–National Zoological Park, Front Royal, VA 22630, USA.
B Hawai’i Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
C Corresponding author. Email: hagedornm@si.edu
Reproduction, Fertility and Development 28(8) 1049-1060 https://doi.org/10.1071/RD16082
Submitted: 15 February 2016 Accepted: 29 April 2016 Published: 17 June 2016
Abstract
Coral reefs are some of the oldest, most diverse and valuable ecosystems on Earth because they can support one-quarter of all marine life in our oceans. Despite their importance, the world’s coral reefs continue to be degraded at unprecedented rates by local and global threats that are warming and creating a more acidic ocean. This paper explores the reproductive challenges of coral for ex situ conservation, using IVF and cryopreservation, and our practical biobanking methods. Coral present challenges for cryopreservation because their reproductive period is often limited to a few nights yearly, they are mostly hermaphrodites with diverse modes of reproduction, including asexual reproduction (i.e. fragmentation and parthenogenesis) and sexual reproduction (i.e. self- and cross-fertilisation) and they express physiological toxins that can inhibit cryopreservation. We have banked spermatozoa from 12 coral species using the same field-hardy methods and have created new coral with thawed spermatozoa. In addition, we describe the cryopreservation of coral symbionts, whose physiology only permits the highest success seasonally. As part of a multidisciplinary conservation strategy, these collections may provide a major hedge against extinction for corals facing the damaging effects of climate change and loss of genetic diversity, and promise to help offset threats to our reefs worldwide.
Additional keywords: cryopreservation, spermatozoa, Symbiodinium.
References
Abrego, D., an Oppen, M. J., and Willis, B. L. (2009). Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 18, 3532–3543.| Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny.Crossref | GoogleScholarGoogle Scholar | 19627494PubMed |
Aitken-Palmer, C., Hou, R., Burrell, C., Zhang, Z., Wang, C., Spindler, R., Wildt, D. E., Ottinger, M. A., and Howard, J. (2012). Protracted reproductive seasonality in the male giant panda (Ailuropoda melanoleuca) reflected by patterns in androgen profiles, ejaculate characteristics, and selected behaviors. Biol. Reprod. 86, 195.
| Protracted reproductive seasonality in the male giant panda (Ailuropoda melanoleuca) reflected by patterns in androgen profiles, ejaculate characteristics, and selected behaviors.Crossref | GoogleScholarGoogle Scholar | 22492970PubMed |
Alam, N., Bae, B. H., Hong, J., Lee, C. O., Im, K. S., and Jung, J. H. (2001a). Cytotoxic diacetylenes from the stony coral Montipora species. J. Nat. Prod. 64, 1059–1063.
| Cytotoxic diacetylenes from the stony coral Montipora species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Oku78%3D&md5=518d00b8547c4c45a2b0c7181cad31b4CAS | 11520227PubMed |
Alam, N., Hong, J., Lee, C. O., Im, K. S., Son, B. W., Choi, J. S., Choi, W. C., and Jung, J. H. (2001b). Montipyridine, a new pyridinium alkaloid from the stony coral Montipora species. J. Nat. Prod. 64, 956–957.
| Montipyridine, a new pyridinium alkaloid from the stony coral Montipora species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVKlu70%3D&md5=2e6cba52007f2cd3f8f55123fe036948CAS | 11473434PubMed |
Alam, N., Hong, J., Lee, C. O., Choi, J. S., Im, K. S., and Jung, J. H. (2002). Additional cytotoxic diacetylenes from the stony coral Montipora sp. Chem. Pharm. Bull. (Tokyo) 50, 661–662.
| Additional cytotoxic diacetylenes from the stony coral Montipora sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12lu7Y%3D&md5=e9f6f296860584fb5df88deb60aa078aCAS | 12036024PubMed |
Babcock, R. C., and Heyward, A. J. (1986). Larval development of certain gamete-spawning scleractinian corals. Coral Reefs 5, 111–116.
| Larval development of certain gamete-spawning scleractinian corals.Crossref | GoogleScholarGoogle Scholar |
Babcock, R. C., Bull, G. D., Harrison, P. L., Heyward, A. J., Oliver, J. K., Wallace, C. C., and Willis, B. L. (1986). Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394.
| Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |
Bae, B. H., Im, K. S., Choi, W. C., Hong, J., Lee, C. O., Choi, J. S., Son, B. W., Song, J. I., and Jung, J. H. (2000). New acetylenic compounds from the stony coral Montipora sp. J. Nat. Prod. 63, 1511–1514.
| New acetylenic compounds from the stony coral Montipora sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFSrtr8%3D&md5=285d39a5f4f1ab01c07a3fafed09921dCAS | 11087594PubMed |
Baker, A. C. (2003). Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689.
| Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium.Crossref | GoogleScholarGoogle Scholar |
Baker, A. C., Starger, C., McClanahan, T. R., and Glynn, P. W. (2004). Corals’ adaptive response to climate change. Nature 430, 741.
| Corals’ adaptive response to climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGlsr8%3D&md5=688e02eaa185a6ad044b95bc7d97127dCAS | 15306799PubMed |
Baria, M. V. B., Dela Cruz, D. W., Villanueva, R. D., and Guest, J. R. (2012). Spawning of three-year-old Acropora millepora corals reared from larvae in northwestern Philippines. Bull. Mar. Sci. 88, 61–62.
| Spawning of three-year-old Acropora millepora corals reared from larvae in northwestern Philippines.Crossref | GoogleScholarGoogle Scholar |
Barshis, D. J., Stillman, J. H., Gates, R. D., Toonen, R. J., Smith, L. W., and Birkeland, C. (2010). Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol. Ecol. 19, 1705–1720.
| Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGisr0%3D&md5=12f06e6edf837b242f232a9b6d32f59eCAS | 20345691PubMed |
Baums, I. B., Durante, M. D., Laing, A. A., Feingold, J., Smith, T., Bruckner, A., and Monteiro, J. (2014). Marginal coral populations: the densest known aggregation of Pocillopora in the Galápagos Archipelago is of asexual origin. Front. Mar. Sci. 1, 59.
| Marginal coral populations: the densest known aggregation of Pocillopora in the Galápagos Archipelago is of asexual origin.Crossref | GoogleScholarGoogle Scholar |
Berkelmans, R., and van Oppen, M. J. H. (2006). The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. Biol. Sci. 273, 2305–2312.
| The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change.Crossref | GoogleScholarGoogle Scholar | 16928632PubMed |
de Blainville, H. M. (1830). Zoophytes. In ‘Dictionnaire des sciences naturelles, dans lequel on traitre méthodiquement des differéns êtres de la nature, considérés soit en eux-mêmes, d’après l’état actuel de nos connoissances, soit relativement a l’utlité qu’en peuvent retirer la médicine, l’agriculture, le commerce et les arts’. (Ed. F. G. Levrault.) (Le Normat: Paris.)
Bower, A. D., and Aitken, S. N. (2006). Geographic and seasonal variation in cold hardiness of whitebark pine. Can. J. Res. 36, 1842–1850.
| Geographic and seasonal variation in cold hardiness of whitebark pine.Crossref | GoogleScholarGoogle Scholar |
Boxshall, G. A., Mees, J., Costello, M. J., Hernandez, F., Gofas, S., Hoeksema, B. W., Klautau, M., Kroh, A., Paulay, G., Poore, G., et al. (2014). ‘World Register of Marine Species.’ Available at http://www.marinespecies.org [Verified 17 May 2016]
Brady, A. K., Hilton, J. D., and Viz, P. D. (2009). Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28, 677–680.
| Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response.Crossref | GoogleScholarGoogle Scholar |
Cesar, H. L. P. (2000) Coral reefs: their functions, threats and economic value. In ‘Collected Essays on the Economics of Coral Reefs’. (Ed. H. L. P. Cesar.) pp. 14–39. (CORDIO, University of Kalmar.)
Chong, G., Tsai, S., Wang, L.-H., Huang, C.-Y., and Lin, C. (2016). Cryopreservation of the gorgonian endosymbiont Symbiodinium. Sci. Rep. 6, 18 816.
| Cryopreservation of the gorgonian endosymbiont Symbiodinium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1egtg%3D%3D&md5=c56e662ac966bb5e916ef1898eea720dCAS |
Christen, R., Schackmann, R. W., Dahlquist, F. W., and Shapiro, B. M. (1983). 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp. Cell Res. 149, 289–294.
| 31P-NMR analysis of sea urchin sperm activation. Reversible formation of high energy phosphate compounds by changes in intracellular pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXjt1Chsw%3D%3D&md5=e78a71b77cbda07d25e6aea0ab4a54aaCAS | 6641799PubMed |
Coffroth, M. A., and Santos, S. R. (2005). Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156, 19–34.
| Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFektbk%3D&md5=7f1be3fccdc3fb32638a989dd101c328CAS | 16048130PubMed |
Combosch, D. J., and Vollmer, S. V. (2011). Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific. PLoS One 6, e21200.
| Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the tropical eastern Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFegsLnM&md5=2e5e1fde3fda308e2e3e72d1ecb57d09CAS | 21857900PubMed |
Comizzoli, P., and Holt, W. V. (2016). Implications of the Nagoya Protocol for genome resource banks composed of biomaterials from rare and endangered species. Reprod. Fertil. Dev. , .
| Implications of the Nagoya Protocol for genome resource banks composed of biomaterials from rare and endangered species.Crossref | GoogleScholarGoogle Scholar | 27279472PubMed |
Comizzoli, P., and Wildt, D. E. (2014). Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options. Reprod. Fertil. Dev. 26, 91–98.
| Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options.Crossref | GoogleScholarGoogle Scholar |
Comizzoli, P., Songsasen, N., Hagedorn, M., and Wildt, D. E. (2012). Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 78, 1666–1681.
| Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38jit1yntQ%3D%3D&md5=9a36b6b1da189140319aae727e332ca3CAS | 22704386PubMed |
Concepcion, G. T., Baums, I. B., and Toonen, R. J. (2014). Regional population structure of Montipora capitata across the Hawaiian Archipelago. Bull. Mar. Sci. 90, 257–275.
| Regional population structure of Montipora capitata across the Hawaiian Archipelago.Crossref | GoogleScholarGoogle Scholar |
Costanzo, J. P., Reynolds, A. M., do Amaral, M. C. F., Rosendale, A. J., and Lee, R. E. (2015). Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 10, e0117234.
| Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog.Crossref | GoogleScholarGoogle Scholar | 25688861PubMed |
Cox, E. F., and Ward, S. (2002). Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns. Mar. Pollut. Bull. 44, 1230–1235.
| Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFeiur4%3D&md5=83036450cb016fea54ebc9e6ac6d7894CAS | 12523521PubMed |
D’Alessandro, A. G., and Martemucci, G. (2003). Evaluation of seasonal variations of semen freezability in Leccese ram. Anim. Reprod. Sci. 79, 93–102.
| Evaluation of seasonal variations of semen freezability in Leccese ram.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szitlCgtg%3D%3D&md5=91245992efbc37d25cacdda399e06571CAS | 12853182PubMed |
Day, J. G., and Brand, J. J. (2005). Cryopreservation methods for maintaining microalgal cultures. In ‘Algal Culturing Techniques’. (Ed. R. A. Andersen.) pp. 139–149. (Elsevier: Amsterdam.)
de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., Christie, M., Crossman, N., Ghermandi, A., Hein, L., Hussain, S., Kumar, P., McVittie, A., Portela, R., Rodriguez, L.C., ten Brink, P., and van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv 1, 50–61.
| Global estimates of the value of ecosystems and their services in monetary units.Crossref | GoogleScholarGoogle Scholar |
Diaz-Pulido, G., and McCook, L. J. (2005). Effects of nutrient enhancement on the fecundity of a coral reef macroalga. J. Exp. Mar. Biol. Ecol. 317, 13–24.
| Effects of nutrient enhancement on the fecundity of a coral reef macroalga.Crossref | GoogleScholarGoogle Scholar |
Edwards, A. J., Guest, J. R., Heyward, A. J., Villanueva, R. D., Baria, M. V., Bollozos, I. S. F., and Golbuu, Y. (2015). Direct seeding of mass-cultured coral larvae is not an effective option for reef rehabilitation. Mar. Ecol. Prog. Ser. 525, 105–116.
| Direct seeding of mass-cultured coral larvae is not an effective option for reef rehabilitation.Crossref | GoogleScholarGoogle Scholar |
Elliott, G. D., Lee, P. C., Paramore, E., Van Vorst, M., and Comizzoli, P. (2015). Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv. Biobank. 13, 164–171.
| Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpslOrtr0%3D&md5=a9475af9da6a4eadcd4ed2565b53715fCAS | 26035005PubMed |
Fay, S. A., and Weber, M. X. (2012). The occurrence of mixed infections of Symbiodinium (Dinoflagellata) within individual hosts. J. Phycol. 48, 1306–1316.
| The occurrence of mixed infections of Symbiodinium (Dinoflagellata) within individual hosts.Crossref | GoogleScholarGoogle Scholar | 27009983PubMed |
Fine, M., Gildor, H., and Genin, A. (2013). A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647.
| A coral reef refuge in the Red Sea.Crossref | GoogleScholarGoogle Scholar | 23959950PubMed |
Fisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., and Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505.
| Species richness on coral reefs and the pursuit of convergent global estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOqtL4%3D&md5=3102778c96f2939bb46553c80478e645CAS | 25639239PubMed |
Franklin, D. J., Molina Cedres, C. M., and Ove Hoegh-Guldberg, O. (2006). Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching. Mar. Biol. 149, 633–642.
| Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching.Crossref | GoogleScholarGoogle Scholar |
Fuentes-Grünewald, C., Garcés, E., Rossi, S., and Camp, J. (2009). Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36, 1215–1224.
| Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production.Crossref | GoogleScholarGoogle Scholar | 19536573PubMed |
Fusetani, N., Toyoda, T., Asai, N., Matsunaga, S., and Maruyama, T. (1996). Montiporic acids A and B, cytotoxic and antimicrobial polyacetylene carboxylic acids from eggs of the scleractinian coral Montipora digitata. J. Nat. Prod. 59, 796–797.
| Montiporic acids A and B, cytotoxic and antimicrobial polyacetylene carboxylic acids from eggs of the scleractinian coral Montipora digitata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Clsb0%3D&md5=a106f5d65477b11a42fecd7a30f47e38CAS | 8792626PubMed |
del C. Gómez-Cabrera, M., Ortiz, J., Loh, W., Ward, S., and Hoegh-Guldberg, O. (2008). Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27, 219–226.
| Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus.Crossref | GoogleScholarGoogle Scholar |
Gorospe, K. D., and Karl, S. A. (2013). Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis. Mol. Ecol. 22, 3721–3736.
| Genetic relatedness does not retain spatial pattern across multiple spatial scales: dispersal and colonization in the coral, Pocillopora damicornis.Crossref | GoogleScholarGoogle Scholar | 23786173PubMed |
Gratwicke, B., Ross, H., Batista, A., Chaves, G., Crawford, A. J., Elizondo, L., Estrada, A., Evans, M., Garelle, D., Guerrel, J., Hertz, A., Hughey, M., Jaramillo, C. A., Klocke, B., Mandica, M., Medina, D., Richards-Zawacki, C. L., Ryan, M. J., Sosa-Bartuano, A., Voyles, J., Walker, B., Woodhams, D. C., and Ibáñez, R. (2016). Evaluating the probability of avoiding disease-related extinctions of Panamanian amphibians through captive breeding programs. Anim. Conserv. , .
| Evaluating the probability of avoiding disease-related extinctions of Panamanian amphibians through captive breeding programs.Crossref | GoogleScholarGoogle Scholar |
Guillaard, R. R. L. (2005). Purification methods for microalgae. In ‘Algal Culturing Techniques’. (Ed. R. A. Andersen.) pp. 117–132. (Elsevier: Amsterdam.)
Hagedorn, M., Pan, R., Cox, E. F., Hollingsworth, L., Krupp, D., Lewis, T. D., Leong, J. C., Mazur, P., Rall, W. F., MacFarlane, D. R., Fahy, G., and Kleinhans, F. W. (2006). Coral larvae conservation: physiology and reproduction. Cryobiology 52, 33–47.
| Coral larvae conservation: physiology and reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2FosFOgsw%3D%3D&md5=f973d8db01d574914abf49cc0510151bCAS | 16337183PubMed |
Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E., Brittsan, M., Byers, M., Henley, M., Laterveer, M., Leong, J. A., McCarthy, M., Meyers, S., Nelson, B. D., Petersen, D., Tiersch, T., Uribe, R. C., Woods, E., and Wildt, D. (2012a). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One 7, e33354.
| Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktF2it7Y%3D&md5=af5f090fc61fe99829dea0d422c6a042CAS | 22413020PubMed |
Hagedorn, M., van Oppen, M. J., Carter, V., Henley, M., Abrego, D., Puill-Stephan, E., Negri, A., Heyward, A., MacFarlane, D., and Spindler, R. (2012b). First frozen repository for the Great Barrier Reef coral created. Cryobiology 65, 157–158.
| First frozen repository for the Great Barrier Reef coral created.Crossref | GoogleScholarGoogle Scholar | 22659104PubMed |
Hagedorn, M., Carter, V., Zuchowicz, N., Phillips, M., Penfield, C., Shamenek, B., Vallen, E. A., Kleinhans, F. W., Peterson, K., White, M., and Yancey, P. H. (2015a). Trehalose is a chemical attractant in the establishment of coral symbiosis. PLoS One 10, e0117087.
| Trehalose is a chemical attractant in the establishment of coral symbiosis.Crossref | GoogleScholarGoogle Scholar | 25629699PubMed |
Hagedorn, M., Farrell, A., Carter, V., Zuchowicz, N., Johnston, E., Padilla-Gamino, J., Gunasekera, S., and Paul, V. (2015b). Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success. PLoS One 10, e0118364.
| Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success.Crossref | GoogleScholarGoogle Scholar | 25714606PubMed |
Hardy, M. P., and Dent, J. N. (1986). Regulation of motility in sperm of the red-spotted newt. J. Exp. Zool. 240, 385–396.
| Regulation of motility in sperm of the red-spotted newt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslCkuw%3D%3D&md5=8615a94ea9b6112707d43c22673e1914CAS | 3794627PubMed |
Harrison, P. L. (2011). Sexual reproduction of scleractian corals. In ‘Coral Reefs: An Ecosystem in Transition’. (Eds Z. Dubinsky and N. Stambler.) pp. 59–85. (Springer.)
Harrison, P. L., Babcock, R. C., Bull, G. D., Oliver, J. K., Wallace, C. C., and Willis, B. L. (1984). Mass spawning in tropical reef corals. Science 223, 1186–1189.
| Mass spawning in tropical reef corals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvitFWlsg%3D%3D&md5=9ef6ce5e8b00b2e8c2afe50c663b9575CAS | 17742935PubMed |
Highsmith, R. C. (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226.
| Reproduction by fragmentation in corals.Crossref | GoogleScholarGoogle Scholar |
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwater Res. 50, 839–866.
| Climate change, coral bleaching and the future of the world’s coral reefs.Crossref | GoogleScholarGoogle Scholar |
Hoegh-Guldberg, O. (2011). Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, S215–S227.
| Coral reef ecosystems and anthropogenic climate change.Crossref | GoogleScholarGoogle Scholar |
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E. (2007). Coral reefs under papid climate change and ocean acidification. Science 318, 1737–1742.
| Coral reefs under papid climate change and ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWhu7fN&md5=323a3e535dca686d20e0d55babbc7ddbCAS | 18079392PubMed |
Howard, J. G. (1993). Semen collection and analysis in carnivores. In ‘Zoo and Wild Animal Medicine: Current Therapy’. 3rd edn. (Ed. M. E. Fowler.) pp. 390–399. (W. B. Saunders Co.: Philadelphia, PA.)
Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nystrom, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933.
| Climate change, human impacts, and the resilience of coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1elsb4%3D&md5=a3926479f07bb61539241ac110c47894CAS | 12920289PubMed |
IPPC (2007). ‘Climate Change 2007: The Physical Science Basis.’ (Cambridge University Press: Cambridge.)
Irikawa, A., Casareto, B. E., Suzuki, Y., Agostini, S., Hidaka, M., and van Woesik, R. (2011). Growth anomalies on Acropora cytherea corals. Mar. Pollut. Bull. 62, 1702–1707.
| Growth anomalies on Acropora cytherea corals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKrtbo%3D&md5=2bd40a0f963b3a2aa64c4706d5b842bcCAS | 21704344PubMed |
Jackson, J., Donovan, M., Cramer, K., and Lam, V. (2014). ‘Status and Trends of Caribbean Coral Reefs: 1970–2012. Global Coral Reef Monitoring Network.’ (International Union for the Conservation of Nature Global Marine and Polar Program: Washington, D. C.)
Jin, B., Kleinhans, F. W., and Mazur, P. (2014). Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 68, 419–430.
| Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlslWktrs%3D&md5=b2910c0d1e75999f43451a38d7cce717CAS | 24662030PubMed |
Jones, R. C., and Murdoch, R. N. (1996). Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reprod. Fertil. Dev. 8, 553–568.
| Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FitlOnsw%3D%3D&md5=d31a5aa75b1645bf57e62d9998f6d762CAS | 8870080PubMed |
Jones, A. M., Berkelmans, R., van Oppen, M. J., Mieog, J. C., and Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. Biol. Sci. 275, 1359–1365.
| A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3ptFChsg%3D%3D&md5=21aa5ba37bfa1f7035b07a0c341d9b4cCAS | 18348962PubMed |
Kawachi, M., and Noël, M. H. (2005). Sterilization and sterile technique. In ‘Algal Culturing Techniques’. (Ed. R. A. Andersen.) pp. 65–82. (Elsevier Academic Press: Amsterdam.)
Ladner, J. T., Barshis, D. J., and Palumbi, S. R. (2012). Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 12, 217.
| Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslyqt7Y%3D&md5=06ab50587e8f2d51085c4d2dbeacb147CAS | 23145489PubMed |
Levitan, D. R., Boudreau, W., Jara, J., and Knowlton, N. (2014). Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10.
| Long-term reduced spawning in Orbicella coral species due to temperature stress.Crossref | GoogleScholarGoogle Scholar |
Ligabue-Braun, R., Verli, H., and Carlini, C. R. (2012). Venomous mammals: a review. Toxicon 59, 680–695.
| Venomous mammals: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFWqurY%3D&md5=8f9ea6e3da1a002ddf03465677337de9CAS | 22410495PubMed |
Ma, R., Haoa, S., Jing Tianb, J., Suna, J., and Kang, L. (2006). Seasonal variation in cold-hardiness of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae). Environ. Entomol. 35, 881–886.
| Seasonal variation in cold-hardiness of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae).Crossref | GoogleScholarGoogle Scholar |
Magalon, H., Adjeroud, M., and Veuille, M. (2005). Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol. Ecol. 14, 1861–1868.
| Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslemsLk%3D&md5=052902153979acffeb27f473f2f7307aCAS | 15910311PubMed |
Marquis, C. P., Baird, A. H., de Nys, R., Holmstrom, C., and Koziumi, N. (2005). An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs 24, 248–253.
| An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals.Crossref | GoogleScholarGoogle Scholar |
Marshall, P., and Schuttenberg, H. (2006). ‘A Reef Manager’s Guide To Coral Bleaching.’ (Great Barrier Reef Marine Park Authority: Townsville, Qld.)
Morita, M., Nishikawa, A., Nakajima, A., Iguchi, A., Sakai, K., Takemura, A., and Okuno, M. (2006). Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis. J. Exp. Biol. 209, 4574–4579.
| Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyku7o%3D&md5=2571024510281b0a664aeb8ef9830da0CAS | 17079727PubMed |
Nielson, B. (2014). ‘DAR Coral Bleaching Rapid Response Surveys September–October 2014.’ Available at http://dlnr.hawaii.gov/reefresponse/files/2014/10/DARCoralBleachingSrvy_Results_10.28.2014.pdf [Verified 17 May 2016]
Ohki, S., Morita, M., Kitanobo, S., Kowalska, A. A., and Kajetan Kowalski, R. (2014). Cryopreservation of Acropora digitifera sperm with use of sucrose and methanol based solution. Cryobiology 69, 134–139.
| Cryopreservation of Acropora digitifera sperm with use of sucrose and methanol based solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFenu7zL&md5=aeb57b289b05917229621c3850aa0c1aCAS | 24974821PubMed |
Oliver, T. A., and Palumbi, S. R. (2011). Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30, 241–250.
| Many corals host thermally resistant symbionts in high-temperature habitat.Crossref | GoogleScholarGoogle Scholar |
Olofsson, M., Lamela, T., Nilsson, E., Bergé, J. P., del Pino, V., Uronen, P., and Legrand, C. (2012). Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5, 1577–1592.
| Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVyqsLg%3D&md5=4502aa2df769ce0dc93e22ec4d28c21cCAS |
Padilla-Gamiño, J. L., and Gates, R. D. (2012). Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160.
| Spawning dynamics in the Hawaiian reef-building coral Montipora capitata.Crossref | GoogleScholarGoogle Scholar |
Pence, V. C. (1995). Cryopreservation of recalcitrant seeds. In ‘Biotechnology in Agriculture and Forestry 32, Cryopreservation of Plant Germplasm’. Vol. 1. (Ed. Y. P. S. Bajaj.) pp. 29–50. (Springer: New York.)
Penland, L., Kloulechad, J., Idip, D., and van Woesik, R. (2004). Coral spawning in the western Pacific Ocean is related to solar radiation: evidence of multiple spawning events in Palau. Coral Reefs 23, 133–140.
| Coral spawning in the western Pacific Ocean is related to solar radiation: evidence of multiple spawning events in Palau.Crossref | GoogleScholarGoogle Scholar |
Pochon, X., and Gates, R. D. (2010). A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol. Phylogenet. Evol. 56, 492–497.
| A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWgtbg%3D&md5=cf9e648524f6725fde4c4ca9920fa256CAS | 20371383PubMed |
Putnam, H. M., Stat, M., Pochon, X., and Gates, R. D. (2012). Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc. Biol. Sci. 279, 4352–4361.
| Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals.Crossref | GoogleScholarGoogle Scholar | 22933373PubMed |
Rhodes, L., Smith, J. E., Tervit, R., Roberts, R., Adamson, J., Adams, S., and Decker, M. (2006). Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52, 152–156.
| Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlejsbg%3D&md5=ea9450f2b2492fddce31b29c7e0d50c2CAS | 16321370PubMed |
Rocha, L. A., Aleixo, A., Allen, G., Almeda, F., Baldwin, C. C., Barclay, M. V., Bates, J. M., Bauer, A. M., Benzoni, F., Berns, C. M., et al. (2014). Specimen collection: an essential tool. Science 344, 814–815.
| Specimen collection: an essential tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVWnsrY%3D&md5=d5e9fc5d53b4c12abbe3ce76c98e7384CAS | 24855245PubMed |
Rowan, R., Knowlton, N., Baker, A., and Jara, J. (1997). Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388, 265–269.
| Landscape ecology of algal symbionts creates variation in episodes of coral bleaching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslShu78%3D&md5=f927e1f5a675ea822e3e05798423e830CAS | 9230434PubMed |
Sakai, K. (1998). Effect of colony size, polyp size, and budding mode on egg production in a colonial coral. Biol. Bull. 195, 319–325.
| Effect of colony size, polyp size, and budding mode on egg production in a colonial coral.Crossref | GoogleScholarGoogle Scholar |
Santiago-Vázquez, L. Z., Nealie, C., Newberger, N. G., and Kerr, R. G. (2007). Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Mar. Biol. 152, 549–556.
| Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae.Crossref | GoogleScholarGoogle Scholar |
Schopmeyer, S. A., Lirman, D., Bartels, E., Byrne, J., Gilliam, D. S., Hunt, J., Johnson, M. E., Larson, E. A., Maxwell, K., Nedimyer, N., and Walter, C. (2012). In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703.
| In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event.Crossref | GoogleScholarGoogle Scholar |
Seki, S., and Mazur, P. (2012). Ultra-rapid warming yields high survival of mouse oocytes cooled to –196°C in dilutions of a standard vitrification solution. PLoS One 7, e36058.
| Ultra-rapid warming yields high survival of mouse oocytes cooled to –196°C in dilutions of a standard vitrification solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFWktbc%3D&md5=d8ae06bc23028764d131e4c64f3b6e97CAS | 22558325PubMed |
Shearer, T. L., Porto, I., and Zubillaga, A. L. (2009). Restoration of coral populations in light of genetic diversity estimates. Coral Reefs 28, 727–733.
| Restoration of coral populations in light of genetic diversity estimates.Crossref | GoogleScholarGoogle Scholar | 22833700PubMed |
Silverstein, R. N., Correa, A. M., and Baker, A. C. (2012). Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. Proc. Biol. Sci. 279, 2609–2618.
| Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change.Crossref | GoogleScholarGoogle Scholar | 22367985PubMed |
Stat, M., Loh, W. K. W., LaJeunesse, T. C., Hoegh-Guldberg, O., and Carter, D. A. (2009). Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28, 709–713.
| Stability of coral–endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |
Stat, M., Pochon, X., Franklin, E., Bruno, J. F., Casey, K. S., Selig, E. R., and Gates, R. D. (2013). The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol. Evol. 3, 1317–1329.
| The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress.Crossref | GoogleScholarGoogle Scholar | 23762518PubMed |
Umapathy, G., Sontakke, S. D., Reddy, A., and Shivaji, S. (2007). Seasonal variations in semen characteristics, semen cryopreservation, estrus synchronization, and successful artificial insemination in the spotted deer (Axis axis). Theriogenology 67, 1371–1378.
| Seasonal variations in semen characteristics, semen cryopreservation, estrus synchronization, and successful artificial insemination in the spotted deer (Axis axis).Crossref | GoogleScholarGoogle Scholar | 17383719PubMed |
van Oppen, M. J., Oliver, J. K., Putnam, H. M., and Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313.
| Building coral reef resilience through assisted evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFCgsrw%3D&md5=669bbbce3b5a132b6337b3e5a1840005CAS | 25646461PubMed |
Van Veghel, M. L. J., and Bak, R. P. M. (1994). Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. III. Reproduction in damaged and regenerating colonies. Mari. Ecol. Prog. Ser. 109, 229–233.
| Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. III. Reproduction in damaged and regenerating colonies.Crossref | GoogleScholarGoogle Scholar |
Veron, J. E. N. (1986) ‘Corals of Australia and the Indo-Pacific.’ (Angus & Robertson Publishers: London.)
Wallace, C. C. (1999) ‘Staghorn Corals of the World.’ (CSIRO: Melbourne, Vic.)
Ward, S., Harrison, P., and Hoegh-Guldberg, O. (2002) Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In ‘Proceedings of the 9th International Coral Reef Symposium, Bali, 23–27 October 2000’. pp. 1123–1128.
Weil, E., Croquer, A., and Urreiztieta, I. (2009). Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia). Dis. Aquat. Organ. 87, 45–55.
| Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia).Crossref | GoogleScholarGoogle Scholar | 20095240PubMed |
Wildt, D. E., Comizzoli, P., Pukazhenthi, B., and Songsasen, N. (2010). Lessons from biodiversity: the value of nontraditional species to advance reproductive science, conservation, and human health. Mol. Reprod. Dev. 77, 397–409.
| Lessons from biodiversity: the value of nontraditional species to advance reproductive science, conservation, and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKqtr0%3D&md5=f9363b6325571fcb6fc66df58d3a8a8eCAS | 19967718PubMed |
Yamashita, H., Suzuki, G., Hayashibara, T., and Koike, K. (2012). Acropora recruits harbor ‘rare’ Symbiodinium in the environmental pool. Coral Reefs 16, 129–138.
Yang, H., Hazlewood, L., Walter, R. B., and Tiersch, T. R. (2006). Effect of osmotic immobilization on refrigerated storage and cryopreservation of sperm from a viviparous fish, the green swordtail Xiphophorus helleri. Cryobiology 52, 209–218.
| Effect of osmotic immobilization on refrigerated storage and cryopreservation of sperm from a viviparous fish, the green swordtail Xiphophorus helleri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1yqt7k%3D&md5=ee282cdf8d52560d524359d2fa88d9a8CAS | 16375884PubMed |
Yuyama, I., and Higuchi, T. (2014). Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis. PLoS One 9, e98999.
| Comparing the effects of symbiotic algae (Symbiodinium) clades C1 and D on early growth stages of Acropora tenuis.Crossref | GoogleScholarGoogle Scholar | 24914677PubMed |