Carnitine-mediated antioxidant enzyme activity and Bcl2 expression involves peroxisome proliferator-activated receptor-γ coactivator-1α in mouse testis
Vikas Kumar Roy A , Rachna Verma B and Amitabh Krishna B CA Department of Zoology, Mizoram University, Aziawl 796004, Mizoram, India.
B Department of Zoology, Banaras Hindu University, Varanasi 221005, Varanasi, India.
C Corresponding author. Email: akrishna_ak@yahoo.co.in
Reproduction, Fertility and Development 29(6) 1057-1063 https://doi.org/10.1071/RD15336
Submitted: 19 August 2015 Accepted: 13 February 2016 Published: 11 April 2016
Abstract
The protective effects of carnitine have been attributed to inhibition of apoptosis, alleviating oxidative stress and DNA repair mechanism by decreasing oxidative radicles. Carnitine also increases mitochondrial biogenesis via peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α). The role of carnitine in testicular PGC1α expression has not been documented. We hypothesised that the effects of carnitine as an antioxidant, inhibitor of apoptosis and controller of steroidogenesis in mouse testis may involve PGC1α as a regulator. The present study was designed to evaluate the localisation of PGC1α and the effects of carnitine treatment on the expression of PGC1α, Bcl2 and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) in mouse testis and serum testosterone concentrations. PGC1α was primarily immunolocalised to the Leydig cells and primary spermatocytes. Western blot analysis showed that carnitine (50 mg kg–1 and 100 mg kg–1 for 7 days) significantly increased PGC1α and Bcl2 expression in the testis in a dose-dependent manner. In addition, carnitine treatment significantly increased antioxidant enzyme (CAT, SOD and GPx) levels. The carnitine-induced changes in PGC1α in the testis were significantly correlated with changes in serum testosterone concentrations, as well as with changes in Bcl2 expression and antioxidant enzyme activity in the testis, as evaluated by electrophoresis. Therefore, the results of the present study suggest that carnitine treatment of mice increases PGC1α levels in the testis, which may, in turn, regulate steroidogenesis by increasing expression of Bcl2 and antioxidant enzymes.
Additional keywords: apoptosis, catalase, glutathione peroxidase, oxidative stress, speroxide dismutase, testosterone.
References
Agarwal, A., and Said, T. M. (2004). Carnitines and male infertility. Reprod. Biomed. Online 8, 376–384.| Carnitines and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslygu7w%3D&md5=3ac16754a9bed4ce13f61e8566a7deb0CAS | 15149558PubMed |
Ahmed, M. M., Ibrahim, Z. S., Alkafafy, M., and El-Shazly, S. A. (2014). l-Carnitine protects against testicular dysfunction caused by gamma irradiation in mice. Acta Histochem. 116, 1046–1055.
| l-Carnitine protects against testicular dysfunction caused by gamma irradiation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVSlsr%2FM&md5=c621f62712c838e1ce2a5129740ee5d6CAS | 24925768PubMed |
Aitken, R. J., and Roman, S. D. (2008). Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 1, 15–24.
| Antioxidant systems and oxidative stress in the testes.Crossref | GoogleScholarGoogle Scholar | 19794904PubMed |
Amendola, R., Cordelli, E., Mauro, F., and Spanò, M. (1991). Effects of l-acetylcarnitine (LAC) on post injury recovery of mouse spermatogenesis monitored by flow cytometry. 2. Recovery after hyperthermic treatment. Andrologia 23, 135–140.
| Effects of l-acetylcarnitine (LAC) on post injury recovery of mouse spermatogenesis monitored by flow cytometry. 2. Recovery after hyperthermic treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslSlsb0%3D&md5=ba9f6764b6d8e14599b717e6564459b0CAS | 1952118PubMed |
Arslan, E., Milcan, A., Unal, S., Demirkan, F., Polat, A., Bagdatoglu, O., Aksoy, A., and Polat, G. (2003). The effects of carnitine on distally-burned dorsal skin flap: an experimental study in rats. Burns 29, 221–227.
| The effects of carnitine on distally-burned dorsal skin flap: an experimental study in rats.Crossref | GoogleScholarGoogle Scholar | 12706614PubMed |
Beauchamp, C., and Fridovich, I. (1971). Superoxide dismutase, improved assay and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.
| Superoxide dismutase, improved assay and an assay applicable to acrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XjtFKhsg%3D%3D&md5=0a73ae0b5ed400254e19b538c9019c27CAS | 4943714PubMed |
Bell, E. L., and Guarente, L. (2011). The SirT3 divining rod points to oxidative stress. Mol. Cell 42, 561–568.
| The SirT3 divining rod points to oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsV2jtbw%3D&md5=dd40c8f4eebbe6793d0caca9d115c8b5CAS | 21658599PubMed |
Boerrigter, M. E., Franceschi, C., Arrigoni-Martelli, E., Wei, J. Y., and Vijg, J. (1993). The effect of l-carnitine and acetyl-l-carnitine on the disappearance of DNA single-strand breaks in human peripheral blood lymphocytes. Carcinogenesis 14, 2131–2136.
| The effect of l-carnitine and acetyl-l-carnitine on the disappearance of DNA single-strand breaks in human peripheral blood lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlGhtA%3D%3D&md5=59166a84ff660ea4647dc5b1773cd94fCAS | 8222066PubMed |
Cassano, P., Sciancalepore, A. G., and Pesce, V. (2006). Acetyl-l-carnitine feeding to unloaded rats triggers in soleus muscle the coordinated expression of genes involved in mitochondrial biogenesis. Biochim. Biophys. Acta 1757, 1421–1428.
| Acetyl-l-carnitine feeding to unloaded rats triggers in soleus muscle the coordinated expression of genes involved in mitochondrial biogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanu7zL&md5=29ce496198eb14c434d84ea0c93ba822CAS | 16814248PubMed |
Caviglia, D., Scarabelli, L., and Palmero, S. (2004). Effects of carnitines on rat Sertoli cell protein metabolism. Horm. Metab. Res. 36, 221–225.
| Effects of carnitines on rat Sertoli cell protein metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKgurg%3D&md5=511f17301e351192681f2b5b8aac0aa5CAS | 15114520PubMed |
Chandra, A., Surti, N., Kesavan, S., and Agarwal, A. (2009). Significance of oxidative stress in human reproduction. Arch. Med. Sci. 5, S28–S42.
| 1:CAS:528:DC%2BC3cXptlahtw%3D%3D&md5=140cbeda5b57ddc77c0a629694e267e8CAS |
Chen, H. H., Sue, Y. M., Chen, C. H., Hsu, Y. H., Hou, C. C., Cheng, C. Y., Lin, S. L., Tsai, W. L., Chen, T. W., and Chen, T. H. (2009). Peroxisome proliferator-activated receptor α plays a crucial role in l-carnitine anti-apoptosis effect in renal tubular cells. Nephrol. Dial. Transplant. 24, 3042–3049.
| Peroxisome proliferator-activated receptor α plays a crucial role in l-carnitine anti-apoptosis effect in renal tubular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFygsL%2FI&md5=effa5a2446f6ab561535034968fc4357CAS | 19491382PubMed |
Cifone, M. G., Alesse, E., Di Marzio, L., Ruggeri, B., Zazzeroni, F., Moretti, S., Famularo, G., Steinberg, S. M., Vullo, E., and De Simone, C. (1997). Effect of l-carnitine treatment in vivo on apoptosis and ceramide generation in peripheral blood lymphocytes from AIDS patients. Proc. Assoc. Am. Physicians 109, 146–153.
| 1:CAS:528:DyaK2sXit1ejurw%3D&md5=b9d193276a6249ad8d30d1b0547924c6CAS | 9069583PubMed |
Grasfeder, L. L., Gaillard, S., and Hammes, S. R. (2009). Fasting-induced hepatic production of DHEA is regulated by PGC-1α, ERRα, and HNF4α. Mol. Endocrinol. 23, 1171–1182.
| Fasting-induced hepatic production of DHEA is regulated by PGC-1α, ERRα, and HNF4α.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFOntbg%3D&md5=8097b362e52d7d76824436ce39b386afCAS | 19389810PubMed |
Hildeman, D. A., Mitchell, T., Aronow, B., Wojciechowski, S., Kappler, J., and Marrack, P. (2003). Control of Bcl-2 expression by reactive oxygen species. Proc. Natl Acad. Sci. USA 100, 15 035–15 040.
| Control of Bcl-2 expression by reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFaqtLc%3D&md5=a9613b137100ec2849dfcaffc67dd5a7CAS |
Hockenbery, D. M., Oltvai, Z., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251.
| Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Omtr8%3D&md5=e547ea87a17524a8f7237ca555bc2f9aCAS | 7503812PubMed |
Jiang, X., Bai, Y., Zhang, Z., Xin, Y., and Cai, L. (2014). Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function. Toxicol. Appl. Pharmacol. 279, 198–210.
| Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGmtLjF&md5=007a1b1aef192ce6197c467a8b478838CAS | 24967692PubMed |
Kanter, M., Topcu-Tarladacalisir, Y., and Parlar, S. (2010). Antiapoptotic effect of l-carnitine on testicular irradiation in rats. J. Mol. Histol. 41, 121–128.
| Antiapoptotic effect of l-carnitine on testicular irradiation in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVSmt7vN&md5=785a00ea13f3ebfcee3b10ec7e8b3824CAS | 20446105PubMed |
Kong, X., Wang, R., Xue, Y., Liu, X., Zhang, H., Chen, Y., Fang, F., and Chang, Y. (2010). Sirtuin 3, a new target of PGC-1a, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5, e11707.
| Sirtuin 3, a new target of PGC-1a, plays an important role in the suppression of ROS and mitochondrial biogenesis.Crossref | GoogleScholarGoogle Scholar | 20661474PubMed |
Lenzi, A., Lombardo, F., Sgro, P., Salacone, P., Caponecchia, L., Dondero, F., and Gandini, L. (2003). Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial. Fertil. Steril. 79, 292–300.
| Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial.Crossref | GoogleScholarGoogle Scholar | 12568837PubMed |
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=8ecdf487a304856e8a089ea361fb46cbCAS | 14907713PubMed |
Matalliotakis, I., Youmantaki, Y., Evageliou, A., Matalliotakis, G., Goumenou, A., and Koumantakis, E. (2000). l-carnitine levels in the seminal plasma of fertile and infertile man: correlation with sperm quality. Int. J. Fertil. Womens Med. 45, 236–240.
| 1:CAS:528:DC%2BD3cXlvVOltrY%3D&md5=8c8cd2cc8c77260095e55296d7d745f9CAS | 10929687PubMed |
Menchini-Fabris, G. F., Canale, D., Izzo, P. L., Olivieri, L., and Bartelloni, M. (1984). Free l-carnitine in human semen: its variability in different andrologic pathologies. Fertil. Steril. 42, 263–267.
| 1:STN:280:DyaL2c3mt1Sguw%3D%3D&md5=32b3bad45ca8e03866b94b018716dbe9CAS | 6430725PubMed |
Mingrone, G., Henriksen, F. L., Greco, A. V., Krogh, L. N., Capristo, E., Gastaldelli, A., Castagneto, M., Ferrannini, E., Gasbarrini, G., and Beck-Nielsen, H. (1999). Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency. Diabetes 48, 1258–1263.
| Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFSgsbc%3D&md5=0af9bb53d72e881bfa656d3e55be3488CAS | 10342813PubMed |
Moretti, S., Famularo, G., Marcellini, S., Boschini, A., Santini, G., Trinchieri, V., Lucci, L., Alesse, E., and De Simone, C. (2002). l-Carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid. Redox Signal. 4, 391–403.
| l-Carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlWltrs%3D&md5=2592bf9186834d40d7c5c2cfbdf0c762CAS | 12215207PubMed |
Ng, C. M., Blackman, M. R., Wang, C., and Swerdloff, R. S. (2004). The role of carnitine in the male reproductive system. Ann. N. Y. Acad. Sci. 1033, 177–188.
| The role of carnitine in the male reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFOnsA%3D%3D&md5=604dc9c837b2211f4c028c6ee2523971CAS | 15591015PubMed |
Palmero, S., Bottazzi, C., Costa, M., Leone, M., and Fugassa, E. (2000). Metabolic effects of l-carnitine on prepubertal rat Sertoli cells. Horm. Metab. Res. 32, 87–90.
| Metabolic effects of l-carnitine on prepubertal rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlKqur8%3D&md5=fd47168fc59799b14b7bf10c42160545CAS | 10786925PubMed |
Ramadan, L. A., Abd-Allah, A. R. A., Aly, H. A. A., and Saad-el-Din, A. A. (2002). Testicular toxicity effects of magnetic field exposure and prophylactic role of coenzyme Q10 and l-carnitine in mice. Pharmacol. Res. 46, 363–370.
| Testicular toxicity effects of magnetic field exposure and prophylactic role of coenzyme Q10 and l-carnitine in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntlamsb4%3D&md5=78a7d397522b08e8313b064d709222fbCAS | 12361700PubMed |
Rato, L., Duarte, A. I., Tomas, G. D., Santos, M. S., Moreira, P. I., Socorro, S., Cavaco, J. E., Alves, M. G., and Oliveira, P. F. (2014). Pre-diabetes alters testicular PGC1-α/Sirt3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim. Biophys. Acta 1837, 335–344.
| Pre-diabetes alters testicular PGC1-α/Sirt3 axis modulating mitochondrial bioenergetics and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1GktL0%3D&md5=c5ee64dd2b2fa8c5ba172ab8f8e10b19CAS | 24361842PubMed |
Roy, V. K., and Krishna, A. (2013). Changes in glucose and carnitine levels and their transporters in uterotubal junction in relation to sperm storage in the vespertilionid bat, Scotophilus heathi. J. Exp. Zool. A. Ecol. Genet. Physiol. 319, 517–526.
| 1:CAS:528:DC%2BC3sXhsF2gsb3M&md5=3c6908925fa1d3d502e4d8696c7c8e9eCAS | 24039231PubMed |
Sun, Y., Elwell, J. H., and Oberley, L. W. (1988). A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radic. Res. Commun. 5, 67–75.
| A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltlCjtA%3D%3D&md5=63ae13a536eacb5da91f5435bdb1991aCAS | 2463958PubMed |
Tanphaichitr, N. (1977). In vitro stimulation of human sperm motility by acetylcarnitine. Int. J. Fertil. 22, 85–91.
| 1:CAS:528:DyaE2sXls1ahsr4%3D&md5=aac97b5d09416f1900635b9eb4d0d83cCAS |
Vicari, E., LaVignera, S., and Calogero, A. (2002). Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil. Steril. 78, 1203–1208.
| Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds.Crossref | GoogleScholarGoogle Scholar | 12477513PubMed |
Weydert, C. J., and Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5, 51–66.
| Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kgtw%3D%3D&md5=2b3fab0aa126d349786fafa01c0d41d8CAS | 20057381PubMed |
Yang, E., Zha, J., and Jockel, J. (1995). Bad, a heterodimeric partner for BclXL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291.
| Bad, a heterodimeric partner for BclXL and Bcl-2, displaces Bax and promotes cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlGns78%3D&md5=fac39a33708fff4888fa51ecf6b751dfCAS | 7834748PubMed |
Yazawa, T., Inaoka, Y., and Okada, R. (2010). PPAR coactivator-1 regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Mol. Endocrinol. 24, 485–496.
| PPAR coactivator-1 regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1eiu7Y%3D&md5=b46e7cf94b6c5a455ddfa4a09d931103CAS | 20133449PubMed |
Ye, J., Li, J., Yu, Y., Wei, Q., Deng, W., and Yu, L. (2010). l-Carnitine attenuates oxidant injury in HK-2 cells via ROS-mitochondria pathway. Regul. Pept. 161, 58–66.
| l-Carnitine attenuates oxidant injury in HK-2 cells via ROS-mitochondria pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKisb4%3D&md5=bcf7a723919234583e245aa0020f54c6CAS | 20093144PubMed |
Zhu, B., Zheng, Y. F., Zhang, Y. Y., Cao, Y. S., Zhang, L., Li, X. G., Liu, T., Jiao, Z. Z., Wang, Q., and Zhao, Z. G. (2015). Protective effect of l-carnitine in cyclophosphamide-induced germ cell apoptosis. J. Zhejiang Univ. Sci. B. 16, 780–787.
| Protective effect of l-carnitine in cyclophosphamide-induced germ cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFGiurrI&md5=de0b6ff1d6bee50ccecc35b7ea180051CAS | 26365120PubMed |