Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transgenerational effects of a hypercaloric diet

A. O. Joaquim A , C. P. Coelho C , P. Dias Motta A , E. F. Bondan A , E. Teodorov D , M. F. M. Martins A , T. B. Kirsten A , R. C. V. Casarin B , L. V. Bonamin A and M. M. Bernardi A B D E
+ Author Affiliations
- Author Affiliations

A Environmental and Experimental Pathology, Paulista University (UNIP), Rua Dr Bacelar, 1212, São Paulo, SP, 04026-002, Brazil.

B Graduate Program of Dentistry, Paulista University, UNIP, Rua Dr Bacelar, 1212, São Paulo, SP, 04026-002, Brazil.

C Graduate Program of Animal Medicine and Welfare, University of Santo Amaro, Rua Enéas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil.

D Mathematics, Computing and Cognition Center, Federal University of ABC, Av. dos Estados, 5001, Santo André, SP, 09210-971, Brazil.

E Corresponding author. Email: marthabernardi@gmail.com

Reproduction, Fertility and Development 29(2) 325-335 https://doi.org/10.1071/RD15165
Submitted: 26 April 2015  Accepted: 9 July 2015   Published: 25 August 2015

Abstract

The effects of a maternal hypercaloric diet (HD) during puberty and early adulthood on neuroimmune aspects in offspring were investigated. In female rats of the F0 generation and male rats of the F1 generation, bodyweight (BW) gain, retroperitoneal fat (RPF) weight, the number of hypodermic adipocytes (HAs) and expression of glial fibrillary acidic protein (GFAP) were measured in hypothalamic astrocytes. On Postnatal Day 50, the F1 pups were challenged with lipopolysaccharide (LPS, 100 µg kg–1, s.c.) or an equal volume of saline (S), and behaviour in the open field test was evaluated, as were plasma neuropeptide and cytokine concentrations. The maternal HD caused the female F0 rats to become overweight. The F1 offspring of dams fed the HD and challenged with saline (HDS group) exhibited increases in BW gain, RPF weight and in the number of large HAs and a decrease in GFAP immunoreactivity. F1 offspring of dams fed the HD and challenged with LPS (HDLPS group) exhibited decreases in BW gain, RPF weight and GFAP immunoreactivity, but no differences were observed in the number of larger and small HAs. Plasma tumour necrosis factor-α concentrations were high in the HDS and HDLPS groups. Thus, the maternal HD during puberty and early adulthood caused the F1 generation to become overweight despite the fact that they received a normocaloric diet. These results indicate a transgenerational effect of the HD that may occur, in part, through permanent changes in immune system programming. The attenuation of neuroinflammation biomarkers after LPS administration may have resulted in a decrease in the number of adipocytes, which, in turn, reduced cytokine, adipokine and chemokine levels, which are able to recruit inflammatory cells in adipose tissue.

Additional keywords: adipocytes, astrocytes, behaviour, immune system, intergenerational relationship, maternal nutrition.


References

Aballay, L. R., Eynard, A. R., del Pilar Díaz, M., Navarro, A., and Muñoz, S. E. (2013). Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr. Rev. 71, 168–179.
Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America.Crossref | GoogleScholarGoogle Scholar | 23452284PubMed |

Ahima, R. S., and Osei, S. Y. (2004). Leptin signaling. Physiol. Behav. 81, 223–241.
Leptin signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Srtrw%3D&md5=9288b8a6ad8cd84642099edc9ab684f8CAS | 15159169PubMed |

Alemán, J. O., Eusebi, L. H., Ricciardiello, L., Patidar, K., Sanyal, A. J., and Holt, P. R. (2014). Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology 146, 357–373.
Mechanisms of obesity-induced gastrointestinal neoplasia.Crossref | GoogleScholarGoogle Scholar | 24315827PubMed |

Andel, M., Polák, J., Kraml, P., Dlouhý, P., and Stich, V. (2009). Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes. Vnitr. Lek. 55, 659–665.
| 1:STN:280:DC%2BD1MngsVGrtg%3D%3D&md5=0eb79476d3a9849efc116d124f00be98CAS | 19731872PubMed |

Arora, S., and Anubhuti, V. (2006). Role of neuropeptides in appetite regulation and obesity: a review. Neuropeptides 40, 375–401.
Role of neuropeptides in appetite regulation and obesity: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgtrbO&md5=41cc3dcb6fc5017f16e111a02aca48dcCAS | 16935329PubMed |

Baskin, D. G., Figlewicz Lattemann, D., Seeley, R. J., Woods, S. C., Porte, D., and Schwartz, M. W. (1999). Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 848, 114–123.
Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVyj&md5=24fcacfc6a8ee7376d25400fcb11d965CAS | 10612703PubMed |

Becskei, C., Riediger, T., Hernádfalvy, N., Arsenijevic, D., Lutz, T. A., and Langhans, W. (2008). Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake. Brain Behav. Immun. 22, 56–64.
Inhibitory effects of lipopolysaccharide on hypothalamic nuclei implicated in the control of food intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWjtLzJ&md5=712cd0907d359bb42a8a7ff33d4e6616CAS | 17624718PubMed |

Berenson, G. S. (2012). Health consequences of obesity. Pediatr. Blood Cancer 58, 117–121.
Health consequences of obesity.Crossref | GoogleScholarGoogle Scholar | 22076834PubMed |

Bernardi, M. M., and Palermo-Neto, J. (1984). Effects of apomorphine administration on rearing activity of control and experimental rats withdrawn from long-term haloperidol treatment. Gen. Pharmacol. 15, 363–365.
Effects of apomorphine administration on rearing activity of control and experimental rats withdrawn from long-term haloperidol treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsVequ70%3D&md5=d2f292fa1b71f14d06e3ed597a95b1e0CAS | 6541605PubMed |

Bernardi, M. M., De Souza, H., and Palermo Neto, J. (1981). Effects of single and long-term haloperidol administration on open field behavior of rats. Psychopharmacology (Berl.) 73, 171–175.
Effects of single and long-term haloperidol administration on open field behavior of rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXitValtLs%3D&md5=eb872bd4311ee9c54a8cb0b798a41955CAS | 6785810PubMed |

Bernardi, M. M., Kirsten, T. B., Matsuoka, S. M., Teodorov, E., Habr, S. F., Penteado, S. H. W. N., and Palermo-Neto, J. (2010). Prenatal lipopolysaccharide exposure affects maternal behavior and male offspring sexual behavior in adulthood. Neuroimmunomodulation 17, 47–55.
Prenatal lipopolysaccharide exposure affects maternal behavior and male offspring sexual behavior in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtleiur3J&md5=724679fa8b6a23c2949047e7e8577ac0CAS | 19816057PubMed |

Blevins, J. E., and Ho, J. M. (2013). Role of oxytocin signaling in the regulation of body weight. Rev. Endocr. Metab. Disord. 14, 311–329.
Role of oxytocin signaling in the regulation of body weight.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaktr%2FI&md5=76d8da182ea214ebf63ed639e8023f0aCAS | 24065622PubMed |

Buckman, L. B., Thompson, M. M., Moreno, H. N., and Ellacott, K. L. J. (2013). Regional astrogliosis in the mouse hypothalamus in response to obesity. J. Comp. Neurol. 521, 1322–1333.
Regional astrogliosis in the mouse hypothalamus in response to obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFSjsLk%3D&md5=57adc972c4af19f7e1fe6a633e138765CAS | 23047490PubMed |

Calvo-Ochoa, E., Hernández-Ortega, K., Ferrera, P., Morimoto, S., and Arias, C. (2014). Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J. Cereb. Blood Flow Metab. 34, 1001–1008.
Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVSrtLg%3D&md5=e421da7b973c0dce7ee946aa043e3551CAS | 24667917PubMed |

Campos, A. C., Fogaça, M. V., Aguiar, D. C., and Guimarães, F. S. (2013). Animal models of anxiety disorders and stress. Rev. Bras. Psiquiatr. 35, S101–S111.
Animal models of anxiety disorders and stress.Crossref | GoogleScholarGoogle Scholar | 24271222PubMed |

Chau, Y. Y., Bandiera, R., Serrels, A., Martínez-Estrada, O. M., Qing, W., Lee, M., Slight, J., Thornburn, A., Berry, R., McHaffie, S., Stimson, R. H., Walker, B. R., Chapuli, R. M., Schedl, A., and Hastie, N. (2014). Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 16, 367–375.
Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvVyksLc%3D&md5=105e52d2893e5b4d41479575560260cbCAS | 24609269PubMed |

Chowen, J. A., Argente, J., and Horvath, T. L. (2013). Uncovering novel roles of nonneuronal cells in body weight homeostasis and obesity. Endocrinology 154, 3001–3007.
Uncovering novel roles of nonneuronal cells in body weight homeostasis and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVegs7nO&md5=fcc7d39e60efa0cb572e5793dd8f3759CAS | 23798599PubMed |

Christiansen, T., Richelsen, B., and Bruun, J. M. (2005). Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int. J. Obes. (Lond) 29, 146–150.
Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKnsLbK&md5=933880be602be3230b687d9bcaaa97e6CAS |

Costa-Pinto, F. A., Cohn, D. W. H., Sa-Rocha, V. M., Sa-Rocha, L. C., and Palermo-Neto, J. (2009). Behavior: a relevant tool for brain–immune system interaction studies. Ann. N. Y. Acad. Sci. 1153, 107–119.
Behavior: a relevant tool for brain–immune system interaction studies.Crossref | GoogleScholarGoogle Scholar | 19236334PubMed |

Dantzer, R., Bluthé, R. M., Layé, S., Bret-Dibat, J. L., Parnet, P., and Kelley, K. W. (1998). Cytokines and sickness behavior. Ann. N. Y. Acad. Sci. 840, 586–590.
Cytokines and sickness behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFSgsL0%3D&md5=fb971580448cccf8dd0db1611a5d1141CAS | 9629285PubMed |

Després, J. P., and Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature 444, 881–887.
Abdominal obesity and metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 17167477PubMed |

Després, J. P., Lemieux, I., Bergeron, J., Pibarot, P., Mathieu, P., Larose, E., Rodés-Cabau, J., Bertrand, O. F., and Poirier, P. (2008). Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28, 1039–1049.
Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk.Crossref | GoogleScholarGoogle Scholar | 18356555PubMed |

Faggin, B. M., and Palermo-Neto, J. (1985). Differential alterations in brain sensitivity to amphetamine and pentylenetetrazol in socially deprived mice. Gen. Pharmacol. 16, 299–302.
Differential alterations in brain sensitivity to amphetamine and pentylenetetrazol in socially deprived mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktFKktL8%3D&md5=f4f877b9e977c4ab52017cc90341645dCAS | 4018548PubMed |

Formiguera, X., and Cantón, A. (2004). Obesity: epidemiology and clinical aspects. Best Pract. Res. Clin. Gastroenterol. 18, 1125–1146.
Obesity: epidemiology and clinical aspects.Crossref | GoogleScholarGoogle Scholar | 15561643PubMed |

Friedman, J. M., and Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature 395, 763–770.
Leptin and the regulation of body weight in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFOmsL0%3D&md5=157e5818d4f75f3a6377db794f7c3d17CAS | 9796811PubMed |

García-Cáceres, C., Yi, C. X., and Tschöp, M. H. (2013). Hypothalamic astrocytes in obesity. Endocrinol. Metab. Clin. North Am. 42, 57–66.
Hypothalamic astrocytes in obesity.Crossref | GoogleScholarGoogle Scholar | 23391239PubMed |

Giugliano, D., and Lefebvre, P. J. (1991). A role for beta-endorphin in the pathogenesis of human obesity? Horm. Metab. Res. 23, 251–256.
A role for beta-endorphin in the pathogenesis of human obesity?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVKhsbk%3D&md5=c27ec09f323aa78f1627ff05ce2e5cb4CAS | 1916633PubMed |

Guyenet, S. J., Nguyen, H. T., Hwang, B. H., Schwartz, M. W., Baskin, D. G., and Thaler, J. P. (2013). High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 1512, 97–105.
High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtV2ntL4%3D&md5=9c8927ad2e5790011bc0eb01e571d9baCAS | 23548599PubMed |

Haidar, Y. M., and Cosman, B. C. (2011). Obesity epidemiology. Clin. Colon Rectal Surg. 24, 205–210.
Obesity epidemiology.Crossref | GoogleScholarGoogle Scholar | 23204935PubMed |

Haslam, D. W., and James, W. P. T. (2005). Obesity. Lancet 366, 1197–1209.
Obesity.Crossref | GoogleScholarGoogle Scholar | 16198769PubMed |

Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2, 231–237.
A comprehensive definition for metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFOltbw%3D&md5=5360ee9d30f0d8005380f90917fd51a3CAS | 19407331PubMed |

Je, H. S., Yang, F., Ji, Y., Nagappan, G., Hempstead, B. L., and Lu, B. (2012). Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc. Natl Acad. Sci. USA 109, 15 924–15 929.
Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGis77F&md5=663c5659241a19f082ff4f8448207749CAS |

Kirsten, T. B., Taricano, M., Flório, J. C., Palermo-Neto, J., and Bernardi, M. M. (2010). Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring. Behav. Brain Res. 211, 77–82.
Prenatal lipopolysaccharide reduces motor activity after an immune challenge in adult male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFaqsro%3D&md5=8667b92163fb84631bab6cc1f04f38f2CAS | 20226214PubMed |

Kirsten, T. B., Chaves-Kirsten, G. P., Chaible, L. M., Silva, A. C., Martins, D. O., Britto, L. R. G., Dagli, M. L., Torrão, A. S., Palermo-Neto, J., and Bernardi, M. M. (2012). Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide. J. Neurosci. Res. 90, 1903–1912.
Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVagtrc%3D&md5=172c731953fda742859805db98743ba1CAS | 22714803PubMed |

Kitzinger, H. B., and Karle, B. (2013). The epidemiology of obesity. Eur. Surg. 45, 80–82.
The epidemiology of obesity.Crossref | GoogleScholarGoogle Scholar |

Lee, J. Y., Sohn, K. H., Rhee, S. H., and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem. 276, 16 683–16 689.
Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGju78%3D&md5=85e73fca325142e4049e64c7485b8540CAS |

Li, M., Sloboda, D. M., and Vickers, M. H. (2011). Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res. 2011, 592408.
Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MfosVegtQ%3D%3D&md5=db6e5cd1c87d1e46399ffd8cb0344df2CAS | 21969822PubMed |

Makki, K., Froguel, P., and Wolowczuk, I. (2013). Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013, 139239.
Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines.Crossref | GoogleScholarGoogle Scholar | 24455420PubMed |

Mayo, L., Trauger, S. A., Blain, M., Nadeau, M., Patel, B., Alvarez, J. I. M. I., Yeste, A., Kivisäkk, P., Kallas, K., Ellezam, B., Bakshi, R., Prat, A., Antel, J. P., Weiner, H. L., and Quintana, F. J. (2014). Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156.
Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOlt7vN&md5=e79b545f909d6a318a457fab5ce760d6CAS | 25216636PubMed |

McGown, C., Aybike Birerdinc, M. S., and Younossi, Z. M. (2014). Adipose tissue as an endocrine organ. Clin. Liver Dis. 18, 41–58.
Adipose tissue as an endocrine organ. Crossref | GoogleScholarGoogle Scholar | 24274864PubMed |

Miegueu, P., St-Pierre, D. H., Lapointe, M., Poursharifi, P., Lu, H., Gupta, A., and Cianflone, K. (2013). Substance P decreases fat storage and increases adipocytokine production in 3T3–L1 adipocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G420–G427.
Substance P decreases fat storage and increases adipocytokine production in 3T3–L1 adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFKqsrw%3D&md5=5679dd871ebe36b000fe5de9eb7b23baCAS | 23257919PubMed |

Nagahara, A. H., and Tuszynski, M. H. (2011). Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219.
Potential therapeutic uses of BDNF in neurological and psychiatric disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFemsbo%3D&md5=137b5a143a9d6b470058ad847d188dabCAS | 21358740PubMed |

Nascimento, A., Bernardi, M., Pecorari, V., Massoco, C., and Felicio, L. (2013). Temporal analysis of lipopolysaccharide-induced sickness behavior in virgin and lactating female rats. Neuroimmunomodulation 20, 305–312.
Temporal analysis of lipopolysaccharide-induced sickness behavior in virgin and lactating female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelsbvM&md5=ef8d15e939131bed9760a1310309b91bCAS | 23887067PubMed |

Penteado, S. H. W., Teodorov, E., Kirsten, T. B., Eluf, B. P., Reis-Silva, T. M., Acenjo, M. K., de Melo, R. C., Suffredini, I. B., and Bernardi, M. M. (2014). Prenatal lipopolysaccharide disrupts maternal behavior, reduces nest odor preference in pups, and induces anxiety: studies of F1 and F2 generations. Eur. J. Pharmacol. 738, 342–351.
Prenatal lipopolysaccharide disrupts maternal behavior, reduces nest odor preference in pups, and induces anxiety: studies of F1 and F2 generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhtb3N&md5=452a99c75f8da9113d49d0681e8b85a9CAS |

Pimentel, S. P., Casati, M. Z., Cirano, F. R., Ribeiro, F. V., Casarin, R. V., Kirsten, T. B., Chaves-Kirsten, G. P., Duarte, P. M., and Bernardi, M. M. (2013). Perinatal periodontal disease reduces social behavior in male offspring. Neuroimmunomodulation 20, 29–38.
Perinatal periodontal disease reduces social behavior in male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahsb%2FN&md5=11d96829745f2665a0e6a35642682195CAS | 23154307PubMed |

Rao, K. R., Padmavathi, I. J. N., and Raghunath, M. (2012). Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev. Endocr. Metab. Disord. 13, 103–108.
Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVOqsb0%3D&md5=0c8504a1fd55c1707b4e90021602a440CAS | 22430228PubMed |

Ridet, J. L., Alonso, G., Chauvet, N., Chapron, J., Koenig, J., and Privat, A. (1995). Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Cell Tissue Res. 283, 39–49.
Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes.Crossref | GoogleScholarGoogle Scholar |

Ridker, P. M., Buring, J. E., Cook, N. R., and Rifai, N. (2003). C-Reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 107, 391–397.
C-Reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women.Crossref | GoogleScholarGoogle Scholar | 12551861PubMed |

Riediger, T., Cordani, C., Potes, C. S., and Lutz, T. A. (2010). Involvement of nitric oxide in lipopolysaccharide induced anorexia. Pharmacol. Biochem. Behav. 97, 112–120.
Involvement of nitric oxide in lipopolysaccharide induced anorexia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oms7zN&md5=fcfd43aaedd6232710221cf2b70e6ff4CAS | 20430051PubMed |

Rodríguez-Hernández, H., Simental-Mendía, L. E., Rodríguez-Ramírez, G., and Reyes-Romero, M. A (2013). Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int. J. Endocrinol. 2013, 678159.
Obesity and inflammation: epidemiology, risk factors, and markers of inflammation.Crossref | GoogleScholarGoogle Scholar | 23690772PubMed |

Ross, M. G., and Desai, M. (2013). Developmental programming of offspring obesity, adipogenesis, and appetite. Clin. Obstet. Gynecol. 56, 529–536.
Developmental programming of offspring obesity, adipogenesis, and appetite.Crossref | GoogleScholarGoogle Scholar | 23751877PubMed |

Schmidt, C., and Bergström, G. M. (2012). The metabolic syndrome predicts cardiovascular events: results of a 13-year follow-up in initially healthy 58-year-old men. Metab. Syndr. Relat. Disord. 10, 394–399.
The metabolic syndrome predicts cardiovascular events: results of a 13-year follow-up in initially healthy 58-year-old men.Crossref | GoogleScholarGoogle Scholar | 22827808PubMed |

Singhal, G., Jaehne, E. J., Corrigan, F., Toben, C., and Baune, B. T. (2014). Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front. Neurosci. 8, 315.
Inflammasomes in neuroinflammation and changes in brain function: a focused review.Crossref | GoogleScholarGoogle Scholar | 25339862PubMed |

Soto, A. M. S., Kirsten, T. B., Reis-Silva, T. M., Martins, M. F. M., Teodorov, E., Flório, J. C., Palermo-Neto, J., Bernardi, M. M., and Bondan, E. F. (2013). Single early prenatal lipopolysaccharide exposure impairs striatal monoamines and maternal care in female rats. Life Sci. 92, 852–858.
Single early prenatal lipopolysaccharide exposure impairs striatal monoamines and maternal care in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1egs7Y%3D&md5=f2d7ac964e9684b209cda5368650d401CAS |

Taylor, P. D., and Poston, L. (2007). Developmental programming of obesity in mammals. Exp. Physiol. 92, 287–298.
Developmental programming of obesity in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFegs7w%3D&md5=2f939d6201a8d8e926d08d22f2a9a130CAS | 17170060PubMed |

Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., Zhao, X., Sarruf, D. A., Izgur, V., Maravilla, K. R., Nguyen, H. T., Fischer, J. D., Matsen, M. E., Wisse, B. E., Morton, G. J., Horvath, T. L., Baskin, D. G., Tschöp, M. H., and Schwartz, M. W. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162.
Obesity is associated with hypothalamic injury in rodents and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFCltw%3D%3D&md5=0d8f4a6d143a5d97bfb26e85ae1b63ffCAS | 22201683PubMed |

Velloso, L. A., Araújo, E. P., and de Souza, C. T. (2008). Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation 15, 189–193.
Diet-induced inflammation of the hypothalamus in obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFyqtrbK&md5=e44cf48002a9f09b7aba34fdce144fc0CAS | 18781083PubMed |

Vickers, M. H. (2014). Developmental programming and transgenerational transmission of obesity. Ann. Nutr. Metab. 64, 26–34.
Developmental programming and transgenerational transmission of obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WqtrfN&md5=ac7253abab7dc9d41d6c1474f1ae455eCAS | 25059803PubMed |

Wen, X., Pekkala, S., Wang, R., Wiklund, P., Feng, G., Cheng, S. M., Tan, X., Liu, Y., Chen, P., Eriksson, J. G., Alen, M., and Cheng, S. (2014). Does systemic low-grade inflammation associate with fat accumulation and distribution? A 7-year follow-up study with peripubertal girls. J. Clin. Endocrinol. Metab. 99, 1411–1419.
Does systemic low-grade inflammation associate with fat accumulation and distribution? A 7-year follow-up study with peripubertal girls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlektLc%3D&md5=5f0e1b5905f6147b2e089bab5333c32eCAS | 24423339PubMed |

Wilding, J. P. H. (2002). Neuropeptides and appetite control. Diabet. Med. 19, 619–627.
Neuropeptides and appetite control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1Wjs7s%3D&md5=0b918d66ee501b479c4f01f352fe8940CAS |

Wilson, P. W. F., D’Agostino, R. B., Parise, H., Sullivan, L., and Meigs, J. B. (2005). Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112, 3066–3072.
Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2rtbfL&md5=20a06aef42dbe1dd6343a7b5efb29e53CAS |

Youngson, N. A., and Morris, M. J. (2013). What obesity research tells us about epigenetic mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110337.
What obesity research tells us about epigenetic mechanisms.Crossref | GoogleScholarGoogle Scholar | 23166398PubMed |