Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Aquaporins in boar spermatozoa. Part II: detection and localisation of aquaglyceroporin 3

Noelia Prieto-Martínez A D , Roser Morató A , Ingrid Vilagran A , Joan E. Rodríguez-Gil B , Sergi Bonet A and Marc Yeste C
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra (Barcelona), Spain.

C Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.

D Corresponding author. Email: noelia.prieto@udg.edu

Reproduction, Fertility and Development 29(4) 703-711 https://doi.org/10.1071/RD15164
Submitted: 26 April 2015  Accepted: 26 October 2015   Published: 18 December 2015

Abstract

The proteins belonging to the aquaporin family play a fundamental role in water and solute transport across biological membranes. While the presence of these proteins has been extensively studied in somatic cells, their function in mammalian spermatozoa has been studied less. The present study was designed to identify and localise aquaglyceroporin 3 (AQP3) in boar spermatozoa. With this purpose, 29 fresh ejaculates from post-pubertal Piétrain boars were classified into two groups based upon their sperm quality and subsequently evaluated through western blot and immunofluorescence assessments. Western blotting showed the specific signal band of AQP3 at 25 kDa, whereas immunofluorescence assessments allowed us to identify two different AQP3 localisation patterns: (1) spermatozoa presenting a clear labelling located only in the mid-piece and (2) spermatozoa exhibiting a distribution pattern in the head and along the entire tail. The first staining pattern was predominant in all studied ejaculates. Despite individual differences in AQP3 content and localisation between boar ejaculates, these differences were not correlated with sperm quality. In conclusion, although AQP3 is present in boar spermatozoa in two different localisation patterns, neither the AQP3 content nor its localisation have been found to be associated with conventional sperm parameters.

Additional keywords: aquaglyceroporin 3, boar sperm, mid-piece, sperm tail, western blot.


References

Agre, P. (2004). Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 43, 4278–4290.
Aquaporin water channels (Nobel Lecture).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOmu70%3D&md5=b39d188fb68b3f6896b82ab621c55098CAS | 15368374PubMed |

Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 3–16.
Aquaporin water channels – from atomic structure to clinical medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVamu7w%3D&md5=415e8cef9ccd7be10c3b4774b3a4a374CAS | 12096044PubMed |

Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005). Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J. 19, 1459–1467.
Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFSltLY%3D&md5=dbff37a8599da8a6b1a1725d6bf30661CAS | 16126913PubMed |

Arachea, B. T., Sun, Z., Potente, N., Malik, R., Isailovic, D., and Viola, R. E. (2012). Detergent selection for enhanced extraction of membrane proteins. Protein Expr. Purif. 86, 12–20.
Detergent selection for enhanced extraction of membrane proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKnsL3I&md5=9d3941836af52f780b69abc51cd0857dCAS | 22963795PubMed |

Benson, J. D., Woods, E. J., Walters, E. M., and Critser, J. K. (2012). The cryobiology of spermatozoa. Theriogenology 78, 1682–1699.
The cryobiology of spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSlt7vK&md5=dfa8314911698acaaf7810e850c7bf81CAS | 23062722PubMed |

Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005). The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J. Biol. Chem. 280, 17149–17153.
The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFOgtLg%3D&md5=07dd51f05c99359add788c6f8cf7b204CAS | 15749715PubMed |

Camargo, L. S., Boite, M. C., Wohlres-Viana, S., Mota, G. B., Serapiao, R. V., Sa, W. F., Viana, J. H., and Nogueira, L. A. (2011). Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 63, 256–262.
Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCqsLfP&md5=c00cfa0d664ccde5d6ef1ce3d60b5cf3CAS | 21985766PubMed |

Chauvigné, F., Boi, M., Finn, R. N., and Cerdà, J. (2015). Mitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility. Sci. Rep. 5, 7789.
Mitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility.Crossref | GoogleScholarGoogle Scholar | 25586329PubMed |

Chen, Q., and Duan, E. K. (2011). Aquaporins in sperm osmo-adaptation: an emergent role for volume regulation. Acta Pharmacol. Sin. 32, 721–724.
Aquaporins in sperm osmo-adaptation: an emergent role for volume regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyju7k%3D&md5=bc157cc74e9c12c2bb56792f51c165cdCAS | 21552294PubMed |

Chen, Q., Peng, H., Lei, L., Zhang, Y., Kuang, H., Cao, Y., Shi, Q. X., Ma, T., and Duan, E. (2011). Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmo-adaptation and migration. Cell Res. 21, 922–933.
Aquaporin 3 is a sperm water channel essential for postcopulatory sperm osmo-adaptation and migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgur4%3D&md5=660aa02ab49848f0744324e853a38406CAS | 21135872PubMed |

Edashige, K., Yamaji, Y., Kleinhans, F. W., and Kasai, M. (2003). Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 87–94.
Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2j&md5=143d2a891098fb7d60db725585530f2cCAS | 12493699PubMed |

Edashige, K., Tanaka, M., Ichimaru, N., Ota, S., Yazawa, K., Higashino, Y., Sakamoto, M., Yamaji, Y., Kuwano, T., Valdez, D. M., Kleinhans, F. W., and Kasai, M. (2006). Channel-dependent permeation of water and glycerol in mouse morulae. Biol. Reprod. 74, 625–632.
Channel-dependent permeation of water and glycerol in mouse morulae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislKqsbw%3D&md5=d1c09ec38dc12159096dd1f9354666ceCAS | 16339044PubMed |

Edashige, K., Ohta, S., Tanakam, M., Kuwanom, T., Valdezm, D. M., Hara, T., Jin, B., Takahashi, S., Seki, S., Koshimoto, C., and Kasai, M. (2007). The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77, 365–375.
The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ontr0%3D&md5=e0e3d5bd4e5851492f12fe9863447d24CAS | 17429015PubMed |

Fàbrega, A., Puigmulé, M., Yeste, M., Casas, I., Bonet, S., and Pinart, E. (2011). Impact of epididymal maturation, ejaculation and in vitro capacitation on tyrosine phosphorylation patterns exhibited in boar (Sus domesticus) spermatozoa. Theriogenology 76, 1356–1366.
Impact of epididymal maturation, ejaculation and in vitro capacitation on tyrosine phosphorylation patterns exhibited in boar (Sus domesticus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 21835448PubMed |

Filho, A. C., Brezinsky, R. M., Youngblood, R. C., Da Silva, L. D., Willard, S. T., Ryan, P. L., and Feugang, J. M. (2014). Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa. Reprod. Fertil. Dev. 26, 141–142.
Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lsr3J&md5=405dcd431e538b8f23935b9aa72226d8CAS |

Hibuse, T., Maeda, N., Nagasawa, A., and Funahashi, T. (2006). Aquaporins and glycerol metabolism. Biochim. Biophys. Acta 1758, 1004–1011.
Aquaporins and glycerol metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Onurc%3D&md5=07fa1d32b0a2707109e8c3b3e87475e2CAS | 16487477PubMed |

Hill, A. E., Shachar-Hill, B., and Shachar-Hill, Y. (2004). What are aquaporins for? J. Membr. Biol. 197, 1–32.
What are aquaporins for?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2mt7o%3D&md5=fc1e2c12bc6a88538e60b2c0d80915d3CAS | 15014915PubMed |

Huang, H. F., He, R. H., Sun, C. C., Zhang, Y., Meng, Q. X., and Ma, Y. Y. (2006). Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update 12, 785–795.
Function of aquaporins in female and male reproductive systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeisbzL&md5=aa7b8fd5a287b774a976cb825306347aCAS | 16840793PubMed |

Ito, J., Kawabe, M., Ochiai, H., Suzukamo, C., Harada, M., Mitsugi, Y., Seita, Y., and Kashiwazaki, N. (2008). Expression and immunodetection of aquaporin 1 (AQP1) in canine spermatozoa. Cryobiology 57, 312–314.
Expression and immunodetection of aquaporin 1 (AQP1) in canine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChtbrE&md5=137ce72c413a6b27d0912cc2b6fca4c7CAS | 18926811PubMed |

Jin, B., Kawai, Y., Haram, T., Takeda, S., Seki, S., Nakata, Y., Matsukawa, K., Koshimoto, C., Kasai, M., and Edashige, K. (2011). Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos. Biol. Reprod. 85, 834–847.
Pathway for the movement of water and cryoprotectants in bovine oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ht7rI&md5=22f4b262f8d5afd602401c585df5a6a5CAS | 21677305PubMed |

Jones, A. R. (1997). Metabolism of lactate by mature boar spermatozoa. Reprod. Fertil. Dev. 9, 227–232.
Metabolism of lactate by mature boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVGgt7o%3D&md5=524a63f9b8928063c515dced322a54d6CAS | 9208433PubMed |

Jones, A. R., Chantrill, L. A., and Cokinakis, A. (1992). Metabolism of glycerol by mature boar spermatozoa. J. Reprod. Fertil. 94, 129–134.
Metabolism of glycerol by mature boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslSrtbg%3D&md5=79a137491fc4ec20e2bb5997bfff0fa4CAS | 1552474PubMed |

King, L. S., Kozono, D., and Agre, P. (2004). From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell Biol. 5, 687–698.
From structure to disease: the evolving tale of aquaporin biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCms7Y%3D&md5=b25c30e2c742eae21c6513d0f032fba4CAS | 15340377PubMed |

Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., Gasparetto, M., Goldberg, M., Goralczyk, E. M., Hyun, B., Jansen, K., Kollmann, T., Kong, M., Leif, R., McWeeney, S., Moloshok, T. D., Moore, W., Nolan, G., Nolan, J., Nikolich-Zugich, J., Parrish, D., Purcell, B., Qian, Y., Selvaraj, B., Smith, C., Tchuvatkina, O., Wertheimer, A., Wilkinson, P., Wilson, C., Wood, J., Zigon, R., Scheuermann, R. H., and Brinkman, R. R. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930.
MIFlowCyt: the minimum information about a flow cytometry experiment.Crossref | GoogleScholarGoogle Scholar |

Lehner, I., Niehof, M., and Borlak, J. (2003). An optimised method for the isolation and identification of membrane proteins. Electrophoresis 24, 1795–1808.
An optimised method for the isolation and identification of membrane proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVenur4%3D&md5=25d9f380f1702d5b29356e734152c336CAS | 12783457PubMed |

Matsuzaki, T., Tajika, Y., Tserentsoodol, N., Suzuki, T., Aoki, T., Hagiwara, H., and Takata, K. (2002). Aquaporins: a water channel family. Anat. Sci. Int. 77, 85–93.
Aquaporins: a water channel family.Crossref | GoogleScholarGoogle Scholar | 12418088PubMed |

Molinas, S. M., Trumper, L., and Marinelli, R. A. (2012). Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis. Am. J. Physiol. Renal Physiol. 303, F458–F466.
Mitochondrial aquaporin-8 in renal proximal tubule cells: evidence for a role in the response to metabolic acidosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSlu77N&md5=547442cb8e06af24d6c0f09b0c583a3fCAS | 22622463PubMed |

Morató, R., Chauvigné, F., Novo, S., Bonet, S., and Cerdà, J. (2014). Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels. Mol. Reprod. Dev. 81, 450–461.
Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels.Crossref | GoogleScholarGoogle Scholar | 24488947PubMed |

Moretti, E., Terzuoli, G., Mazzi, L., Iacoponi, F., and Collodel, G. (2012). Immunolocalisation of aquaporin 7 in human spermatozoa and its relationship with semen parameters. Syst Biol Reprod Med 58, 129–135.
Immunolocalisation of aquaporin 7 in human spermatozoa and its relationship with semen parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFynsL8%3D&md5=8d9ea72d2a475f2b783180946542b528CAS | 22206455PubMed |

Nixon, B., and Aitken, R. J. (2009). The biological significance of detergent-resistant membranes in spermatozoa. J. Reprod. Immunol. 83, 8–13.
The biological significance of detergent-resistant membranes in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntrvF&md5=35e3606b70d955aca96889a13b54b96fCAS | 19857901PubMed |

Nong, Y. Q., Liu, F. H., Chen, Y., and Wang, F. (2013). The expression and distribution of aquaporin 3 in mouse embryos before and after vitrification. J. Assist. Reprod. Genet. 30, 601–606.
The expression and distribution of aquaporin 3 in mouse embryos before and after vitrification.Crossref | GoogleScholarGoogle Scholar | 23504439PubMed |

Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gsVejtQ%3D%3D&md5=697102a69a3354ddb1f1eaf5a17bda5aCAS | 20171719PubMed |

Prieto-Martínez, N., Vilagran, I., Morató, R., Rodríguez-Gil, J. E., Yeste, M., and Bonet, S. (2014). Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality. Reprod. Fertil. Dev. , .
Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality.Crossref | GoogleScholarGoogle Scholar | 25482725PubMed |

Sachdeva, R., and Singh, B. (2014). Insights into structural mechanisms of gating-induced regulation of aquaporins. Prog. Biophys. Mol. Biol. 114, 69–79.
Insights into structural mechanisms of gating-induced regulation of aquaporins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFSlsb8%3D&md5=b4899170ac27ecc65a2b3c0d371833d8CAS | 24495464PubMed |

Sales, A. D., Lobo, C. H., Carvalho, A. A., Moura, A. A., and Rodrigues, A. P. R. (2013). Structure, function and localisation of aquaporins: their possible implications on gamete cryopreservation. Genet. Mol. Res. 12, 6718–6732.
Structure, function and localisation of aquaporins: their possible implications on gamete cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovV2nu7k%3D&md5=e56267dd935c96602db94437ee929869CAS | 24391013PubMed |

Seki, S., Edashige, K., Wada, S., and Mazur, P. (2011). Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation. Reproduction 142, 505–515.
Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyitb%2FP&md5=c4df41a86955a7358d4b58b34cdd85afCAS | 21734033PubMed |

Törnroth-Horsefield, S., Hedfalk, K., Fischer, G., Lindkvist-Petersson, K., and Richard, N. (2010). Structural insights into eukaryotic aquaporin regulation. FEBS Lett. 584, 2580–2588.
Structural insights into eukaryotic aquaporin regulation.Crossref | GoogleScholarGoogle Scholar | 20416297PubMed |

Verkman, A. S. (2002). Physiological importance of aquaporin water channels. Ann. Med. 34, 192–200.
Physiological importance of aquaporin water channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVahtLk%3D&md5=d35dda57d6ba6e18948624e9844f0c63CAS | 12173689PubMed |

Yeste, M., Briz, M., Pinart, E., Sancho, S., Garcia-Gil, N., Badia, E., Bassols, J., Pruneda, A., Bussalleu, E., Casas, I., and Bonet, S. (2008). Boar spermatozoa and prostaglandin F2α. Quality of boar spermatozoa after the addition of prostaglandin F2α to the short-term extender over cooling time. Anim. Reprod. Sci. 108, 180–195.
Boar spermatozoa and prostaglandin F. Quality of boar spermatozoa after the addition of prostaglandin F to the short-term extender over cooling time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtLnP&md5=586bc07bba55e39907a8750d1ea0ca78CAS | 17897798PubMed |

Yeste, M., Flores, E., Estrada, E., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2013). Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing through stabilisation of disulphide bonds. Reprod. Fertil. Dev. 25, 1036–1050.
Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing through stabilisation of disulphide bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7rM&md5=e44123104a78e5dfe583f66498ffda37CAS | 23089308PubMed |

Yeste, M., Estrada, E., Rivera Del Álamo, M. M., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2014). The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 178C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS One 9, e90887.
The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 178C is concomitant with a higher cryotolerance of boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 24603527PubMed |

Yeung, C. H., and Cooper, T. G. (2010). Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 139, 209–216.
Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWlsw%3D%3D&md5=c3032339fa20ea76b9b10cd799d239f7CAS | 19812234PubMed |

Yeung, C. H., Barfield, J. P., and Cooper, T. G. (2006). Physiological volume regulation by spermatozoa. Mol. Cell. Endocrinol. 250, 98–105.
Physiological volume regulation by spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjt7g%3D&md5=7b7d01f19de1b5c7b66f45024f9720e3CAS | 16446027PubMed |

Yeung, C. H., Callies, C., Tüttelmann, F., Kliesch, S., and Cooper, T. G. (2010). Aquaporins in the human testis and spermatozoa – identification, involvement in sperm volume regulation and clinical relevance. Int. J. Androl. 33, 629–641.
Aquaporins in the human testis and spermatozoa – identification, involvement in sperm volume regulation and clinical relevance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOntbvO&md5=c6c8ef5d552801e8276214d3a6c2b544CAS | 19840149PubMed |

Zhang, D., Ya-Ying, T., Fan, Q., Jian-Zhong, S., and Huang, H. F. (2012). Functions of water channels in male and female reproductive systems. Mol. Aspects Med. 33, 676–690.
Functions of water channels in male and female reproductive systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GmtbfJ&md5=66e37080cb2c4292a07dc633dacfb7bbCAS | 22343019PubMed |