Swim-up of tammar wallaby (Macropus eugenii) spermatozoa in Biggers, Whitter and Whittingham (BWW) medium: maximisation of sperm motility, minimisation of impairment of sperm metabolism and induction of sperm hyperactivation
Minjie Lin A B , Xiyi Zhang A , Ray N. Murdoch A and R. John Aitken AA Discipline of Biological Sciences, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
B Corresponding author. Email: minjie.lin@newcastle.edu.au
Reproduction, Fertility and Development 29(2) 345-356 https://doi.org/10.1071/RD15152
Submitted: 15 April 2015 Accepted: 13 July 2015 Published: 27 August 2015
Abstract
A variety of media were compared for their ability to sustain the motility of tammar wallaby spermatozoa over an 8-h period following swim–up from coagulated semen. The study demonstrated that a modified Tyrode’s solution, Biggers, Whitter and Whittingham medium (BWW) was significantly better than any of the other assessed media in supporting wallaby sperm motility. After 8 h of incubation in BWW, motility was maintained at 79.3 ± 9.3%, with 77.0 ± 10.4% rapid and 65.7 ± 8.7% progressively motile spermatozoa. By contrast, motility was <10% at the same 8-h time point in all of the other media assessed. After 2 h of incubation in BWW, tammar spermatozoa consumed more oxygen than their counterparts in PBS (52.0 ± 2.7 vs 75.0 ± 6.6 μL per 108 spermatozoa per 2 h; P < 0.001). Motility was not enhanced in any of these media by the addition of 5 mM N-acetyl-D-glucosamine, the major energy substrate in wallaby semen. However, addition of dibutyryl cAMP and pentoxifylline in BWW resulted in the extremely rapid induction of hyperactivated motility in the entire sperm population. This burst of hyperactivated motility was entirely dependent on calcium in BWW and significantly inhibited by calmidazolium, a calmodulin inhibitor. A set of computer-assisted sperm analysis parameters were identified that permitted the accurate quantification of hyperactivation rates in this species. This is the first comparative analysis of media for harvesting and incubating marsupial spermatozoa and the first record of hyperactivated motility in any marsupial species.
Additional keywords: cAMP, marsupial spermatozoa, N-acetyl-D-glucosamine, sperm capacitation.
References
Aitken, R. J., Ruda, E. A., Richardson, D. W., Dor, J., Djahanbahkch, O., and Templeton, A. A. (1981). The influence of anti-zona and anti-sperm antibodies on sperm–egg interactions. J. Reprod. Fertil. 62, 597–606.| The influence of anti-zona and anti-sperm antibodies on sperm–egg interactions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3kt1aksQ%3D%3D&md5=66f5a7ca63fb031eebc44013a4da19c9CAS | 7019431PubMed |
Austin, C. R. (1951). Observations on the penetration of the spermatozoon into the mammalian egg. Aust. J. Sci. Res. B 4, 581–596.
| 1:STN:280:DyaG38%2FisFGqsw%3D%3D&md5=274b2a6342a9aa312bcb06c93b8b61acCAS | 14895481PubMed |
Baker, M. A., Lewis, B., Hetherington, L., and Aitken, R. J. (2003). Development of the signalling pathways associated with sperm capacitation during epididymal maturation. Mol. Reprod. Dev. 64, 446–457.
| Development of the signalling pathways associated with sperm capacitation during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsrg%3D&md5=0f6d83babcb4d4bf05016d8c2eba1845CAS | 12589657PubMed |
Baker, M. A., Smith, N. D., Hetherington, L., Taubman, K., Graham, M. E., Robinson, P. J., and Aitken, R. J. (2010). Label-free quantitation of phosphopeptide changes during rat sperm capacitation. J. Proteome Res. 9, 718–729.
| Label-free quantitation of phosphopeptide changes during rat sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1yjug%3D%3D&md5=d034d5b1e2ff3762e2ca699dd2f96a97CAS | 19947656PubMed |
Baker, M. A., Hetherington, L., Weinburg, A., Naumovski, N., Velkov, A., Pelzing, M., Dolman, S., Condina, M. R., and Aitken, R. J. (2012). Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of izumo1. J. Proteome Res. 11, 5252–5264.
| Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of izumo1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmtrfE&md5=d2747836e729bba2bf9f3a9f180845d0CAS | 22954305PubMed |
Bedford, J. M. (1991) The co-evolution of mammalian gametes. In ‘A Comparative Overview of Mammalian Fertilisation’. (Eds B. S. Dunbar and M. G. O’Rand.) pp. 3–35. (Plenum Press: New York.)
Bennetts, L., Lin, M., and Aitken, R. J. (2004). Cyclic AMP-dependent tyrosine phosphorylation in tammar wallaby (Macropus eugenii) spermatozoa. J. Exp. Zoolog. Part A Comp. Exp. Biol. 301A, 118–130.
| Cyclic AMP-dependent tyrosine phosphorylation in tammar wallaby (Macropus eugenii) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVaqur0%3D&md5=0f1a4218e8fedab6b6073289c302a73dCAS |
Biggers, J. D., Whitten, W. K., and Whittingham, D. G. (1971) The culture of mouse embryos in vitro. In ‘Methods in Mammalian Embryology’. (Eds J. C. Jnr Daniel.) pp. 86–116. (Freeman: San Francisco.)
Calvo, L., Dennison-Lagos, L., Banks, S. M., Fugger, E. F., and Sherins, R. J. (1993). Chemical composition and protein source in the capacitation medium significantly affect the ability of human spermatozoa to undergo follicular fluid induced acrosome reaction. Hum. Reprod. 8, 575–580.
| 1:CAS:528:DyaK3sXksVKht7o%3D&md5=b8f8f4758c6608e2852f0d01a05e83a0CAS | 8501189PubMed |
Chang, M. C. (1951). Fertilising capacity of spermatozoa deposited into the Fallopian tubes. Nature 168, 697–698.
| Fertilising capacity of spermatozoa deposited into the Fallopian tubes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG38%2Fht1Cgtw%3D%3D&md5=11ac0c425d6b1c5d8e5ff5fd4b16bf81CAS | 14882325PubMed |
Chavarría, M. E., and Reyes, A. (1996). Secretions of ovine uterus and oviduct induce in vitro capacitation of ram spermatozoa. Arch. Androl. 36, 17–23.
| Secretions of ovine uterus and oviduct induce in vitro capacitation of ram spermatozoa.Crossref | GoogleScholarGoogle Scholar | 8824664PubMed |
Cooper, T., Aitken, R. J., Auger, J., Gordon, B. H. W., Barratt, C. L. R., Behre, H. M., Bjőrndahl, L., Brazil, C., de Jonge, C., and Doncel, G. F. (2010) ‘WHO Laboratory Manual for the Examination and Processing of Human Semen’. 5th edn. (World Health Organisation Press: Geneva.)
Dhindsa, J. S., Sidhu, K. S., and Guraya, S. S. (1995). Induction of buffalo (Bubalus bubalis) sperm capacitation and acrosome reaction in the excised reproductive tract of hamsters. Theriogenology 44, 599–608.
| Induction of buffalo (Bubalus bubalis) sperm capacitation and acrosome reaction in the excised reproductive tract of hamsters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVGitg%3D%3D&md5=dfd60174b4140817684675253d04a413CAS | 16727757PubMed |
Fraser, L. R. (2010). The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Mol. Reprod. Dev. 77, 197–208.
| 1:CAS:528:DC%2BC3cXotFSnuw%3D%3D&md5=a5e49fcabaa880f729a50d8b4a12f620CAS | 19908247PubMed |
González-Fernández, L., Morrell, J. M., Peña, F. J., and Macĭas-Garcĭa, B. (2012). Osmotic shock induces structural damage on equine spermatozoa plasmalemma and mitochondria. Theriogenology 78, 415–422.
| Osmotic shock induces structural damage on equine spermatozoa plasmalemma and mitochondria.Crossref | GoogleScholarGoogle Scholar | 22578615PubMed |
Grunert, J. H., De Geyter, C., and Nieschlag, E. (1990). Objective identification of hyperactivated human spermatozoa by computerized sperm motion analysis with Hamilton-thorn sperm motility analyser. Hum. Reprod. 5, 593–599.
| 1:STN:280:DyaK3czmvV2juw%3D%3D&md5=1bb8dab83a66b65312c8bab7feacaed3CAS | 2118547PubMed |
Harayama, H., Nishijima, K., Murase, T., Sakase, M., and Fukushima, M. (2010). Relationship of protein tyrosine phosphorylation state with tolerance to frozen storage and the potential to undergo cyclic AMP-dependent hyperactivation in the spermatozoa of Japanese Black bulls. Mol. Reprod. Dev. 77, 910–921.
| Relationship of protein tyrosine phosphorylation state with tolerance to frozen storage and the potential to undergo cyclic AMP-dependent hyperactivation in the spermatozoa of Japanese Black bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleqsLrN&md5=9d33047d66a388dc3219a31122543552CAS | 20845370PubMed |
Harper, C. V., Barratt, C. L., and Publicover, S. J. (2004). Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca2+] (i) oscillation and cyclical transitions in flagellar beating. J. Biol. Chem. 279, 46315–46325.
| Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. Induction of [Ca2+] (i) oscillation and cyclical transitions in flagellar beating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCnu7w%3D&md5=cada5ad2af741a05916f68378e3cd619CAS | 15322137PubMed |
Harper, C. V., Wootton, L., Michelangeli, F., Barratt, C. V., and Publicover, S. J. (2005). Secretory pathway Ca2+-ATPase (SPCA1) Ca2+ pumps, not SERCAs regulate complex [Ca2+] signals in human spermatozoa. J. Cell Sci. 118, 1673–1685.
| Secretory pathway Ca2+-ATPase (SPCA1) Ca2+ pumps, not SERCAs regulate complex [Ca2+] signals in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyhsbw%3D&md5=c54bda29d1f4b647aee946454b0865f8CAS |
Ho, H. C., and Suarez, S. S. (2003). Characterisation of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol. Reprod. 68, 1590–1596.
| Characterisation of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12lsbY%3D&md5=2c794ddadacdcd99f4aeb0f8853ff9e8CAS | 12606347PubMed |
Ho, H. C., Granish, K. A., and Suarez, S. S. (2002). Hyperactivated motility of bull spermatozoa is triggered at the axoneme by Ca++ and not cAMP. Dev. Biol. 250, 208–217.
| Hyperactivated motility of bull spermatozoa is triggered at the axoneme by Ca++ and not cAMP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVymsL0%3D&md5=46abf41cd31843ecdc3fa2356e47a5d4CAS | 12297107PubMed |
Howard, J. G., Brown, J. L., Bush, M., and Wildt, D. E. (1990). Teratospermic and normospermic domestic cats: ejaculate traits, pituitary–gonadal hormones and improvement of spermatozoal motility and morphology after swim-up processing. J. Androl. 11, 204–215.
| 1:STN:280:DyaK3czks1Knsg%3D%3D&md5=f0985f1450433b000571a8fa50f20aedCAS | 2384342PubMed |
Ickowicz, D., Finkelstein, M., and Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J. Androl. 14, 816–821.
| Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ght7vP&md5=a255f7185fc7ed35a9cad3cad13caef9CAS | 23001443PubMed |
Lin, M., Harman, A., and Rodger, J. C. (1997). Spermiogenesis and spermiation in a marsupial, the tammar wallaby (Macropus eugenii). J. Anat. 190, 377–395.
| Spermiogenesis and spermiation in a marsupial, the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 9147224PubMed |
Lin, M., Zhang, X., Wade, M., Harris, M., and Nickel, M. (1998). Isolation of protein from subacrosomal region of spermatozoa from a marsupial, the tammar wallaby (Macropus eugenii). J. Reprod. Fertil. 113, 257–267.
| Isolation of protein from subacrosomal region of spermatozoa from a marsupial, the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFOmsr8%3D&md5=95922c6390158f7d35299a9820a69a77CAS | 9861166PubMed |
Lin, M., Zhang, X., Murdoch, R., and Aitken, R. J. (2000). In vitro culture of brushtail possum (Trichosurus vulpecula) epididymal epithelium and induction of epididymal sperm maturation in co-culture. J. Reprod. Fertil. 119, 1–14.
| 1:CAS:528:DC%2BD3cXjsF2jurY%3D&md5=e895f7400cd404d6401d8f9b0edde639CAS | 10864808PubMed |
Lin, M., Hess, R., and Aitken, R. J. (2002). Induction of sperm maturation in vitro in epididymal cell cultures of the tammar wallaby (Macropus eugenii): disruption of motility initiation and sperm morphogenesis by inhibition of actin polymerisation. Reproduction 124, 107–117.
| Induction of sperm maturation in vitro in epididymal cell cultures of the tammar wallaby (Macropus eugenii): disruption of motility initiation and sperm morphogenesis by inhibition of actin polymerisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaksL0%3D&md5=3daa2e9a581adb8038e3b7e9a5bba6d0CAS | 12090924PubMed |
Lin, M., Lee, Y. H., Xu, W., Baker, M. A., and Aitken, R. J. (2006). Ontogeny of tyrosine phosphorylation signalling pathways during spermatogenesis and epididymal maturation in the mouse. Biol. Reprod. 75, 588–597.
| Ontogeny of tyrosine phosphorylation signalling pathways during spermatogenesis and epididymal maturation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs7rN&md5=2bf48898cd7b27f9b6df3b52ec42ca29CAS | 16790687PubMed |
Mahi, C. A., and Yanagimachi, R. (1976). Maturation and sperm penetration of canine ovarian oocytes in vitro. J. Exp. Zool. 196, 189–195.
| Maturation and sperm penetration of canine ovarian oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287pt1yktw%3D%3D&md5=ea260dd1cc73860712034059c844fc9cCAS | 1271036PubMed |
Mate, K. E., Sidhu, K. S., Molinia, F. C., Glazier, A. M., and Rodger, J. C. (2000). Sperm binding and penetration of the zona pellucida in vitro but not sperm–egg fusion in an Australian marsupial, the brushtail possum (Trichosurus vulpecula). Zygote 8, 189–196.
| Sperm binding and penetration of the zona pellucida in vitro but not sperm–egg fusion in an Australian marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvmt1CntA%3D%3D&md5=9ebac3c663ded270b88a610760a20214CAS | 11014497PubMed |
Menegazzo, M., Zuccarello, D., Luca, G., Ferlin, A., Calvitti, M., Mancuso, F., Calafiore, R., and Foresta, C. (2011). Improvements in human sperm quality by long-term in vitro co-culture with isolated porcine Sertoli cells. Hum. Reprod. 26, 2598–2605.
| Improvements in human sperm quality by long-term in vitro co-culture with isolated porcine Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 21771775PubMed |
Morales, P., Overstreet, J. W., and Katz, D. F. (1988). Changes in human sperm motion during capacitation in vitro. J. Reprod. Fertil. 83, 119–128.
| 1:STN:280:DyaL1c3os1Gjug%3D%3D&md5=602fb3c2cdbcedef3b14f0b2d0a64b99CAS | 3397931PubMed |
Mortimer, S. T. (1997). A critical review of the physiological importance and analysis of sperm movement in mammals. Hum. Reprod. Update 3, 403–439.
| A critical review of the physiological importance and analysis of sperm movement in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7oslOmtQ%3D%3D&md5=cf7d2934e8dfe2686baa7f649d095f47CAS | 9528908PubMed |
Murdoch, R. N., and Jones, R. C. (1998). The metabolic properties of spermatozoa from the epididymis of the tammar wallaby, Macropus eugenii. Mol. Reprod. Dev. 49, 92–99.
| The metabolic properties of spermatozoa from the epididymis of the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Kjsb0%3D&md5=4e288ef03accbbae82958eeed24f0166CAS | 9406199PubMed |
Murdoch, R. N., Jones, R. C., Wade, M., and Lin, M. (1999). The ultrastructure and metabolism of ejaculated tammar wallaby spermatozoa are impaired by swim-up procedures when compared with spermatozoa from the cauda epididymides. Reprod. Fertil. Dev. 11, 263–271.
| The ultrastructure and metabolism of ejaculated tammar wallaby spermatozoa are impaired by swim-up procedures when compared with spermatozoa from the cauda epididymides.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czovFentg%3D%3D&md5=f77bbeb596fb326bd43ff4dae7b7f401CAS | 10898291PubMed |
Paris, D. B. B. P., Taggart, D. A., Paris, M. C. J., Temple-Smith, P. D., and Renfree, M. B. (2004). Sperm transport, size of the seminal plug and the timing of ovulation after natural mating in the female tammar wallaby Macropus eugenii. Reprod. Fertil. Dev. 16, 811–822.
| Sperm transport, size of the seminal plug and the timing of ovulation after natural mating in the female tammar wallaby Macropus eugenii.Crossref | GoogleScholarGoogle Scholar |
Paris, D. B. B. P., Taggart, D. A., Shaw, G., Temple-Smith, P. D., and Renfree, M. B. (2005). Changes in semen quality and morphology of the reproductive tract of the male tammar wallaby parallel seasonal breeding activity in the female. Reproduction 130, 367–378.
| Changes in semen quality and morphology of the reproductive tract of the male tammar wallaby parallel seasonal breeding activity in the female.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3L&md5=50a822a5aca172128560b67ef3256435CAS |
Perreault, S. D., and Rogers, B. J. (1982). Capacitation pattern of human spermatozoa. Fertil. Steril. 38, 258–260.
| 1:STN:280:DyaL383mt1WktQ%3D%3D&md5=3f74790c8a5439aefd354c2caff8520eCAS | 6896693PubMed |
Pholpramool, C., Zupp, J. L., and Setchell, B. P. (1985). Motility of undiluted bull epididymal spermatozoa collected by micropuncture. J. Reprod. Fertil. 75, 413–420.
| Motility of undiluted bull epididymal spermatozoa collected by micropuncture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2Fmt1eqtw%3D%3D&md5=1bdc844eea34a51a198380d6d7eac2b8CAS | 4067922PubMed |
Richings, N. M., Shaw, G., Temple-Smith, P. D., and Renfree, M. B. (2004). Intra-cytoplasmic sperm injection in a marsupial. Reproduction 128, 595–605.
| Intra-cytoplasmic sperm injection in a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVSis7nO&md5=0c769950b50972b5e4e96cf451635c01CAS | 15509705PubMed |
Rodger, J. C. (1991) Fertilisation of marsupials. In ‘A Comparative Overview of Mammalian Fertilisation’. (Eds B. S. Dunbar and M. G. O’Rand.) pp. 117–135. (Plenum Press: New York.)
Rodger, J. C., and Bedford, J. M. (1982). Separation of sperm pairs and sperm–egg interaction in the opossum, Didelphis virginiana. J. Reprod. Fertil. 64, 171–179.
| Separation of sperm pairs and sperm–egg interaction in the opossum, Didelphis virginiana.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387gtVygsw%3D%3D&md5=a9441ff17d1850c473be1a440f103bb6CAS | 7054492PubMed |
Rodger, J. C., and Suter, D. A. I. (1978). Respiration rates and sugar utilisation by marsupial spermatozoa. Gamete Res. 1, 111–116.
| Respiration rates and sugar utilisation by marsupial spermatozoa.Crossref | GoogleScholarGoogle Scholar |
Rodger, J. C., and White, I. G. (1974). Free N-acetylglucosamine in marsupial semen. J. Reprod. Fertil. 39, 383–386.
| Free N-acetylglucosamine in marsupial semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsVyqurw%3D&md5=ea59518fb3ea9cc9925e0d621cb9d8f5CAS | 4413512PubMed |
Rodger, J. C., and White, I. G. (1976). Source of seminal N-acetyl glucosamine in Australian marsupials and further studies of free sugars of the marsupial prostate gland. J. Reprod. Fertil. 46, 467–469.
| Source of seminal N-acetyl glucosamine in Australian marsupials and further studies of free sugars of the marsupial prostate gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs1aiu7c%3D&md5=0a29e0d4838c88ee7e1494f792761e80CAS | 1255582PubMed |
Rogers, B. J., and Perreault, S. D. (1990). Importance of glycolysable substrates for in vitro capacitation of human spermatozoa. Biol. Reprod. 43, 1064–1069.
| Importance of glycolysable substrates for in vitro capacitation of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVSiug%3D%3D&md5=ed5ceb2a91fab8a57f8d6fd86b7c797cCAS | 2291925PubMed |
Rogers, B. J., Van Campen, H., Ueno, M., Lambert, H., Bronson, R., and Hale, R. (1979). Analysis of human spermatozoal fertilising ability using zona-free ova. Fertil. Steril. 32, 664–670.
| 1:STN:280:DyaL3c%2FmvFCrsg%3D%3D&md5=b85646c3eda7278ccf93c0cf4da17680CAS | 574462PubMed |
Samour, J., Moore, H. D., and Smith, C. A. (1986). Avian spermatozoa penetrate zona-free hamster oocytes in vitro. J. Exp. Zool. 239, 295–298.
| Avian spermatozoa penetrate zona-free hamster oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28zgs1Kisg%3D%3D&md5=ae88ca4a25111fe2b95963f54fe708d5CAS | 3746237PubMed |
Santos-Sacchi, J., and Gordon, M. (1980). Induction of the acrosome reaction in guinea pig spermatozoa by cGMP analogues. J. Cell Biol. 85, 798–803.
| Induction of the acrosome reaction in guinea pig spermatozoa by cGMP analogues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXks1amtLc%3D&md5=66dd0a6c8b46b8c5e56367e9c3a8a713CAS | 6248566PubMed |
Serres, C., Feneux, D., and Berthon, B. (1991). Decrease of internal free calcium and human sperm movement. Cell Motil. Cytoskeleton 18, 228–240.
| Decrease of internal free calcium and human sperm movement.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3osVaitQ%3D%3D&md5=820cfad0619fc6ad63ffccb9dcefc03fCAS | 2060032PubMed |
Setiadi, D., Lin, M., and Rodger, J. C. (1997). Post-testicular development of spermatozoa of the tammar wallaby (Macropus eugenii). J. Anat. 190, 275–288.
| Post-testicular development of spermatozoa of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 9061449PubMed |
Sidhu, K. S., Mate, K. E., Gunasekera, T., Veal, D., Hetherington, L., Baker, M. A., Aitken, R. J., and Rodger, J. C. (2004). A flow cytometric assay for global estimation of tyrosine phosphorylation associated with capacitation of spermatozoa from two marsupial species, the tammar wallaby (Macropus eugenii) and the brushtail possum (Trichosurus vulpecula). Reproduction 127, 95–103.
| A flow cytometric assay for global estimation of tyrosine phosphorylation associated with capacitation of spermatozoa from two marsupial species, the tammar wallaby (Macropus eugenii) and the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOiurc%3D&md5=2aaf19bb4ba1a4341865ffb61a78ee1eCAS | 15056774PubMed |
Sistina, Y., Lin, M., and Rodger, J. C. (1993). Lysophosphatidylcholine disrupts the acrosome of tammar wallaby (Macropus eugenii) spermatozoa. Mol. Reprod. Dev. 35, 277–284.
| Lysophosphatidylcholine disrupts the acrosome of tammar wallaby (Macropus eugenii) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVKls74%3D&md5=bc4690a94a22991d3d5bb2762c848ceaCAS | 8352933PubMed |
Suarez, S. S. (2008a). Control of hyperactivation in spermatozoa. Hum. Reprod. Update 14, 647–657.
| Control of hyperactivation in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ois7%2FK&md5=de17e92a0e8832e9fdcdf00a54e2ba0dCAS | 18653675PubMed |
Suarez, S. S. (2008b). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462.
| Regulation of sperm storage and movement in the mammalian oviduct.Crossref | GoogleScholarGoogle Scholar | 18649258PubMed |
Suarez, S. S., and Dai, X. (1995). Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster spermatozoa. Mol. Reprod. Dev. 42, 325–333.
| Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFykurk%3D&md5=d727785df698f0581839fc82dd414276CAS | 8579847PubMed |
Talbot, P., and Dicarlantonio, G. (1984). Ultrastructure of opossum oocyte inverstin coats and their sensitivity to trypsin and hyaluronidase. Dev. Biol. 103, 159–167.
| Ultrastructure of opossum oocyte inverstin coats and their sensitivity to trypsin and hyaluronidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvV2gs7Y%3D&md5=1c9db6d1d8dc63acf1b6c1a7acd31e5fCAS | 6714516PubMed |
Tyndal-Biscoe, H., and Renfree, M. (1987a) Male anatomy and spermatogenesis. In ‘Reproductive Physiology of Marsupials’. pp. 124–171. (Cambridge University Press: Cambridge.)
Tyndal-Biscoe, H., and Renfree, M. (1987b) The female urogenital tract and oogenesis. In ‘Reproductive Physiology of Marsupials’. pp. 172–201. (Cambridge University Press: Cambridge.)
Visconti, P. E., Moore, G. D., Bailey, J. L., Leclerc, P., Connors, S. A., Pan, D., Olds-Clarke, P., and Kopf, G. S. (1995). Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121, 1139–1150.
| 1:CAS:528:DyaK2MXltVamurw%3D&md5=a710a1ae0c906e01d267e652cbf88a8dCAS | 7538069PubMed |
Visconti, P. E., Stewart-Savage, J., Blasco, A., Battaglia, L., Miranda, P., Kopf, G. S., and Tezon, J. G. (1999). Roles of bicarbonate, cAMP and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol. Reprod. 61, 76–84.
| Roles of bicarbonate, cAMP and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKgtbg%3D&md5=246daee55cc7dd29218c2d876b74f05eCAS | 10377034PubMed |
Wade, M. A., and Lin, M. (1999). A 33-kDa molecular marker of sperm acrosome differentiation and maturation in the tammar wallaby (Macropus eugenii). J. Reprod. Fertil. 117, 79–88.
| A 33-kDa molecular marker of sperm acrosome differentiation and maturation in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlalt7s%3D&md5=81c1e00c37f1326375e440e057af94e2CAS | 10645248PubMed |
Xia, J., Reigada, D., Michell, C. H., and Ren, D. (2007). Catsper channel-mediated Ca2+ entry into mouse spermatozoa triggers a tail-to-head propagation. Biol. Reprod. 77, 551–559.
| Catsper channel-mediated Ca2+ entry into mouse spermatozoa triggers a tail-to-head propagation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFCrurk%3D&md5=5306dd238dca25fd21a55fe747372f71CAS | 17554080PubMed |
Yunes, R., Doncel, G. F., and Acosta, A. A. (2003). Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples. Biocell 27, 29–36.
| 1:CAS:528:DC%2BD3sXlsFGksL4%3D&md5=7c2f486a49232fa6752bf834fa40ff4eCAS | 12847912PubMed |