Steroids affect gene expression, ciliary activity, glucose uptake, progesterone receptor expression and immunoreactive steroidogenic protein expression in equine oviduct explants in vitro
Hilde Nelis A , Bartosz Wojciechowicz B , Anita Franczak B , Bart Leemans A , Katharina D’Herde C , Karen Goossens D , Pieter Cornillie E , Luc Peelman D , Ann Van Soom A and Katrien Smits A FA Ghent University, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium.
B University of Warmia and Mazury, Department of Animal Physiology, Faculty of Biology and Biotechnology, Oczapowskiego St. 1A, 10-719 Olsztyn, Poland.
C Ghent University, Department of Basic Medical Sciences, De Pintelaan 185 4B3, 9000 Ghent, Belgium.
D Ghent University, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Heidestraat 19, 9820 Merelbeke, Belgium.
E Ghent University, Department of Morphology, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium.
F Corresponding author. Email: katrien.smits@ugent.be
Reproduction, Fertility and Development 28(12) 1926-1944 https://doi.org/10.1071/RD15044
Submitted: 31 January 2015 Accepted: 25 May 2015 Published: 18 June 2015
Abstract
The oviduct undergoes dramatic functional and morphological changes throughout the oestrous cycle of the mare. To unravel the effects of steroids on the morphology, functionality and gene expression of the equine oviduct, an in vitro oviduct explant culture system was stimulated with physiological concentrations of progesterone and 17β-oestradiol. Four conditions were compared: unsupplemented preovulatory explants, preovulatory explants that were stimulated with postovulatory hormone concentrations, unsupplemented postovulatory explants and postovulatory explants that were stimulated with preovulatory hormone concentrations. The modulating effects of both steroids on oviduct explants were investigated and the following parameters examined: (1) ciliary activity, (2) glucose consumption and lactate production pattern, (3) ultrastructure, (4) mRNA expression of embryotrophic genes, (5) steroidogenic capacities of oviductal explants and (6) progesterone receptor expression. The present paper shows that the equine oviduct is an organ with potential steroidogenic capacities, which is highly responsive to local changes in progesterone and 17β-oestradiol concentrations at the level of morphology, functionality and gene expression of the oviduct. These data provide a basis to study the importance of endocrine and paracrine signalling during early embryonic development in the horse.
Additional keywords: aromatase, 3-beta-HSD, cytochrome P450scc, mare, StAR, steroidogenesis.
References
Aguilar, J. J., Cuervo-Arango, J., Mouguelar, H., and Losinno, L. (2012). Histological characteristics of the equine oviductal mucosa at different reproductive stages. J. Equine Vet. Sci. 32, 99–105.| Histological characteristics of the equine oviductal mucosa at different reproductive stages.Crossref | GoogleScholarGoogle Scholar |
Alkhalaf, M., Propper, A. Y., Chaminadas, G., and Adessi, G. L. (1992). Ultrastructural changes in guinea-pig endometrial cells during the oestrous cycle. J. Morphol. 214, 83–96.
| Ultrastructural changes in guinea-pig endometrial cells during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2FlvFertQ%3D%3D&md5=b2b40b66de7f4792b47fadf3aaa23236CAS | 1433309PubMed |
Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
| Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=98447bb4d3556fdfef35c701671916d9CAS | 2231712PubMed |
Armstrong, D. T., and Black, D. L. (1966). Influence of luteinising hormone on corpus luteum metabolism and progesterone biosynthesis throughout bovine oestrous cycle. Endocrinology 78, 937.
| Influence of luteinising hormone on corpus luteum metabolism and progesterone biosynthesis throughout bovine oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XpsFWitg%3D%3D&md5=0d7ec8265b5f922b98d94b6ad030b842CAS | 4379924PubMed |
Ball, B. A., and Altschul, M. (1990). In vitro development of 4- to 8-cell equine embryos co-cultured with trophoblastic vesicles or oviductal explants. Theriogenology 33, 189.
| In vitro development of 4- to 8-cell equine embryos co-cultured with trophoblastic vesicles or oviductal explants.Crossref | GoogleScholarGoogle Scholar |
Ball, B. A., Scoggin, K. E., Troedsson, M. H. T., and Squires, E. L. (2013). Characterisation of prostaglandin E-2 receptors (EP2, EP4) in the horse oviduct. Anim. Reprod. Sci. 142, 35–41.
| Characterisation of prostaglandin E-2 receptors (EP2, EP4) in the horse oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyltbvL&md5=c24dc5a98e7a6046b014f45f50c02395CAS | 24035156PubMed |
Bhatnagar, P., Papaioannou, V. E., and Biggers, J. D. (1995). CSF-1 and mouse preimplantation development in vitro. Development 121, 1333–1339.
| 1:CAS:528:DyaK2MXls1ajsrY%3D&md5=c4ecddda793bc9b14ddbce887a3e61feCAS | 7789264PubMed |
Bogaert, L., Van Poucke, M., De Baere, C., Peelman, L., Gasthuys, F., and Martens, A. (2006). Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids. BMC Biotechnol. 6, 24.
| 16643647PubMed |
Bologna-Molina, R., Damian-Matsumura, P., and Molina-Frechero, N. (2011). An easy cell-counting method for immunohistochemistry that does not use an image analysis program. Histopathology 59, 801–803.
| An easy cell-counting method for immunohistochemistry that does not use an image analysis program.Crossref | GoogleScholarGoogle Scholar | 21939456PubMed |
Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801.
| Remodelling the extracellular matrix in development and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKmtbbF&md5=085c1b4362bbc4abd687071b92d4e811CAS | 25415508PubMed |
Buhi, W. C., and Alvarez, I. M. (2003). Identification, characterisation and localisation of three proteins expressed by the porcine oviduct. Theriogenology 60, 225–238.
| Identification, characterisation and localisation of three proteins expressed by the porcine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1CqsrY%3D&md5=d9eccce65cb03beced53004379aab765CAS | 12749936PubMed |
Buhi, W. C., Vallet, J. L., and Bazer, F. W. (1989). De novo synthesis and release of polypeptides from cyclic and early pregnant porcine oviductal tissue in explant culture. J. Exp. Zool. 252, 79–88.
| De novo synthesis and release of polypeptides from cyclic and early pregnant porcine oviductal tissue in explant culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt12ks7s%3D&md5=eeabb86786a1c00f601d9a1ce8b6610aCAS | 2809536PubMed |
Buhi, W. C., Alvarez, I. M., and Kouba, A. J. (2000). Secreted proteins of the oviduct. Cells Tissues Organs 166, 165–179.
| Secreted proteins of the oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyru74%3D&md5=b7980bac0329de987e9ea670a4ee0fdfCAS | 10729726PubMed |
Burry, R. W. (2011). Controls for immunocytochemistry: an update. J. Histochem. Cytochem. 59, 6–12.
| Controls for immunocytochemistry: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOlsLs%3D&md5=409c47667ef7cf6385a0331bd0f798d2CAS | 20852036PubMed |
Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622.
| The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWqs7g%3D&md5=51e64ac42595f31e7d9b607232abed5cCAS | 19246619PubMed |
Bylander, A., Nutu, M., Wellander, R., Goksor, M., Billig, H., and Larsson, D. G. J. (2010). Rapid effects of progesterone on ciliary beat frequency in the mouse Fallopian tube. Reprod. Biol. Endocrinol. 8, 48.
| Rapid effects of progesterone on ciliary beat frequency in the mouse Fallopian tube.Crossref | GoogleScholarGoogle Scholar | 20470431PubMed |
Cappelli, K., Felicetti, M., Capomaccio, S., Spinsanti, G., Silvestrelli, M., and Supplizi, A. V. (2008). Exercise-induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalisation. BMC Mol. Biol. 9, 49.
| Exercise-induced stress in horses: selection of the most stable reference genes for quantitative RT-PCR normalisation.Crossref | GoogleScholarGoogle Scholar | 18489742PubMed |
Chase, C. C., Delvecchio, R. P., Smith, S. B., and Randel, R. D. (1992). In vitro metabolism of glucose by bovine reproductive tissues obtained during the oestrous cycle and after calving. J. Anim. Sci. 70, 1496–1508.
| 1:CAS:528:DyaK38XktVCqurk%3D&md5=5a2a4b95ef8dc5d0a394410ae0bdb28aCAS | 1526919PubMed |
Chegini, N., Zhao, Y., and Mclean, F. W. (1994). Expression of messenger ribonucleic acid and presence of immunoreactive proteins for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and EGF/TGF-alpha receptors and I-125 EGF binding sites in human Fallopian tube. Biol. Reprod. 50, 1049–1058.
| Expression of messenger ribonucleic acid and presence of immunoreactive proteins for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and EGF/TGF-alpha receptors and I-125 EGF binding sites in human Fallopian tube.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1ahs7c%3D&md5=2cbf5ac4de0e1b8d742a1340381c4796CAS | 8025160PubMed |
Chen, S., Einspanier, R., and Schoen, J. (2013). In vitro mimicking of oestrous-cycle stages in porcine oviduct epithelium cells: oestradiol and progesterone regulate differentiation, gene expression and cellular function. Biol. Reprod. 89, 54.
| In vitro mimicking of oestrous-cycle stages in porcine oviduct epithelium cells: oestradiol and progesterone regulate differentiation, gene expression and cellular function.Crossref | GoogleScholarGoogle Scholar | 23904510PubMed |
Choi, Y. H., Love, L. B., Varner, D. D., and Hinrichs, K. (2004). Factors affecting developmental competence of equine oocytes after intracytoplasmic sperm injection. Reproduction 127, 187–194.
| Factors affecting developmental competence of equine oocytes after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrt7s%3D&md5=3c4e8baeca3e30d51eaf6282984973cdCAS | 15056784PubMed |
Christensen, A. K., and Gillim, S. W. (1969) The correlation of fine structure and function in steroid-secreting cells with emphasis on those of the gonads. In ‘The Gonads’. (Ed. K. McKerns.) pp. 415–490. (Meredith Corporation: New York.)
Ciereszko, R. (1999) Radioimmunoassay of steroid hormones in biological fluids. In ‘Animal Physiology’. (Ed. J. Przala.) pp. 157–163. (UWM Press: Olsztyn.)[In Polish]
Cohen, P. E., Zhu, L. Y., and Pollard, J. W. (1997). Absence of colony-stimulating factor 1 in osteopetrotic (csfm(op)/csfm(op)) mice disrupts oestrous cycles and ovulation. Biol. Reprod. 56, 110–118.
| Absence of colony-stimulating factor 1 in osteopetrotic (csfm(op)/csfm(op)) mice disrupts oestrous cycles and ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Kjsw%3D%3D&md5=adf9ebee17995a813e629806e53316a7CAS | 9002639PubMed |
De Bosschere, H., Ducatelle, R., Vermeirsch, H., Simoens, P., and Coryn, M. (2002). Oestrogen-alpha and progesterone receptor expression in cystic endometrial hyperplasia and pyometra in the bitch. Anim. Reprod. Sci. 70, 251–259.
| Oestrogen-alpha and progesterone receptor expression in cystic endometrial hyperplasia and pyometra in the bitch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1ensro%3D&md5=5c4e33434c16744304be79fe473ec03fCAS | 11943494PubMed |
Desantis, S., Ventriglia, G., Zizza, S., Guaricci, A. C., Losurdo, M., Zarrilli, A., and Albrizio, M. (2010). Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus. Anim. Reprod. Sci. 119, 40–49.
| Changes in the expression of the mu-opioid receptor in the mare oviduct during oestrus and anoestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Kjs7c%3D&md5=869dbfc88b92fa870c14fa824b009d78CAS | 20036785PubMed |
Desantis, S., Zizza, S., Accogli, G., Acone, F., Rossi, R., and Resta, L. (2011). Morphometric and ultrastructural features of the mare oviduct epithelium during oestrus. Theriogenology 75, 671–678.
| Morphometric and ultrastructural features of the mare oviduct epithelium during oestrus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7mvFemtA%3D%3D&md5=c7816c5f6e2d4a368e304d74c63199c5CAS | 21111474PubMed |
Duc-Goiran, P., Mignot, T. M., Bourgeois, C., and Ferre, F. (1999). Embryo–maternal interactions at the implantation site: a delicate equilibrium. Eur. J. Obstet. Gynecol. Reprod. Biol. 83, 85–100.
| Embryo–maternal interactions at the implantation site: a delicate equilibrium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3js1yjtw%3D%3D&md5=deafafb78c75c8359abe0a7a96e3068aCAS | 10221616PubMed |
Duong, T. D., and Erickson, C. A. (2004). MMP-2 plays an essential role in producing epithelial–mesenchymal transformations in the avian embryo. Dev. Dyn. 229, 42–53.
| MMP-2 plays an essential role in producing epithelial–mesenchymal transformations in the avian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1egs7w%3D&md5=71ac7e6e84864478e52f982dd79531feCAS | 14699576PubMed |
Faul, F., Erdfelder, E., Lang, A. G., and Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral and biomedical sciences. Behav. Res. Methods 39, 175–191.
| G*Power 3: a flexible statistical power analysis program for the social, behavioral and biomedical sciences.Crossref | GoogleScholarGoogle Scholar | 17695343PubMed |
Fazeli, A. (2008). Maternal communication with gametes and embryos. Theriogenology 70, 1182–1187.
| Maternal communication with gametes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnmvVOgsg%3D%3D&md5=354edae1fba0d9c3fae2f153c2f88c66CAS | 18657312PubMed |
Franczak, A., and Bogacki, M. (2009). Local and systemic effects of embryos on uterine tissues during early pregnancy in pigs. J. Reprod. Dev. 55, 262–272.
| Local and systemic effects of embryos on uterine tissues during early pregnancy in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFehtb0%3D&md5=d99e643b7c14921a3fed1896fe5d516aCAS | 19293562PubMed |
Franczak, A., Wojciechowicz, B., Zmijewska, A., Kolakowska, J., and Kotwica, G. (2013). The effect of interleukin-1-beta and interleukin-6 on oestradiol-17-beta secretion in the endometrium of pig during early pregnancy and the oestrous cycle. Theriogenology 80, 90–98.
| The effect of interleukin-1-beta and interleukin-6 on oestradiol-17-beta secretion in the endometrium of pig during early pregnancy and the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFagtb4%3D&md5=03ac77cc177823ff262a6f651249432bCAS | 23615429PubMed |
Frolova, A., Flessner, L., Chi, M., Kim, S. T., Foyouzi-Yousefi, N., Moley, K. H., and Moley, H. (2009). Facilitative glucose transporter type 1 is differentially regulated by progesterone and oestrogen in murine and human endometrial stromal cells. Endocrinology 150, 1512–1520.
| Facilitative glucose transporter type 1 is differentially regulated by progesterone and oestrogen in murine and human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2guro%3D&md5=0a18ebc0cafb2e67c942799840eddfc5CAS | 18948400PubMed |
Gabler, C., Killian, G. J., and Einspanier, R. (2001). Differential expression of extracellular matrix components in the bovine oviduct during the oestrous cycle. Reproduction 122, 121–130.
| Differential expression of extracellular matrix components in the bovine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis7w%3D&md5=a2bccb054326362799675c989a29e407CAS | 11425336PubMed |
Georgiou, A. S., Sostaric, E., Wong, C. H., Snijders, A. P. L., Wright, P. C., Moore, H. D., and Fazeli, A. (2005). Gametes alter the oviductal secretory proteome. Mol. Cell. Proteomics 4, 1785–1796.
| Gametes alter the oviductal secretory proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cgtb%2FK&md5=510c164d30b93ac876edfd2fc1ee1373CAS | 16105986PubMed |
Ginther, O. J. (1992) ‘Reproductive Biology of the Mare. Basic and Applied Aspects’. (Cross Plains, Equiservices: Cross Plains, WI, USA.)
Ginther, O. J., Gastal, E. L., Gastal, M. O., Utt, M. D., and Beg, M. A. (2007). Luteal blood flow and progesterone production in mares. Anim. Reprod. Sci. 99, 213–220.
| Luteal blood flow and progesterone production in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1GmsL4%3D&md5=5a5207728b30b97c52c08bb66510e828CAS | 16815650PubMed |
Goossens, K., Van Soom, A., Van Poucke, M., Vandaele, L., Vandesompele, J., Van Zeveren, A., and Peelman, L. J. (2007). Identification and expression analysis of genes associated with bovine blastocyst formation. BMC Dev. Biol. 7, 64.
| 17559642PubMed |
Gstraunthaler, G. (2003). Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20, 275–281.
| 14671707PubMed |
Hanukoglu, I. (1992). Steroidogenic enzymes – structure, function and role in regulation of steroid-hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 43, 779–804.
| Steroidogenic enzymes – structure, function and role in regulation of steroid-hormone biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Grs70%3D&md5=d13808cc36fc966abcb03883dd90c128CAS | 22217824PubMed |
Hashizume, K., Takahashi, T., Shimizu, M., Todoroki, J., Shimada, A., Hirata, M., Sato, T., and Ito, A. (2003). Matrix-metalloproteinases-2 and -9 production in bovine endometrial cell culture. J. Reprod. Dev. 49, 45–53.
| Matrix-metalloproteinases-2 and -9 production in bovine endometrial cell culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlerurY%3D&md5=d2b050138b0fed47f6810da64596dfb7CAS | 14967948PubMed |
Hinrichs, K. (2010). In vitro production of equine embryos: state of the art. Reprod. Domest. Anim. 45, 3–8.
| In vitro production of equine embryos: state of the art.Crossref | GoogleScholarGoogle Scholar | 20591059PubMed |
Hunter, R. H. F. (2005). The Fallopian tubes in domestic mammals: how vital is their physiological activity? Reprod. Nutr. Dev. 45, 281–290.
| The Fallopian tubes in domestic mammals: how vital is their physiological activity?Crossref | GoogleScholarGoogle Scholar |
Hunter, R. H. F. (2012). Components of oviduct physiology in eutherian mammals. Biol. Rev. Camb. Philos. Soc. 87, 244–255.
| Components of oviduct physiology in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387htFKitw%3D%3D&md5=f188947b15a93b3b38691ce6b8c1eb5bCAS |
Jiménez Díaz, M. J., Giunta, S., Valz-Gianinet, J., Pereyra-Alfonso, S., Flores, V., and Miceli, D. (2000). Proteases with plasminogen activator activity in hamster oviduct. Mol. Reprod. Dev. 55, 47–54.
| Proteases with plasminogen activator activity in hamster oviduct.Crossref | GoogleScholarGoogle Scholar |
Jones, J. I., and Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins – biological actions. Endocr. Rev. 16, 3–34.
| 1:CAS:528:DyaK2MXltlKhu7g%3D&md5=f79f63a3dace944357716f61639ecd2dCAS | 7758431PubMed |
Kendle, K. E., and Lee, B. (1980). Investigation of the influence of progesterone on mouse embryo transport by using anti-progestational steroids. J. Reprod. Fertil. 58, 253–258.
| Investigation of the influence of progesterone on mouse embryo transport by using anti-progestational steroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXovVartA%3D%3D&md5=6ca69568202c02cde498a4eb73c36a9bCAS | 6898668PubMed |
Kennedy, T. G., Brown, K. D., and Vaughan, T. J. (1994). Expression of the genes for the epidermal growth factor receptor and its ligands in porcine oviduct and endometrium. Biol. Reprod. 50, 751–756.
| Expression of the genes for the epidermal growth factor receptor and its ligands in porcine oviduct and endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitV2nur4%3D&md5=5cfb7aa57ef896f8b25df4ec9f80bbfeCAS | 7515285PubMed |
Kervancioglu, M. E., Saridogan, E., Atasu, T., Camlibel, T., Demircan, A., Sarikamis, B., and Djahanbakhch, O. (1997). Human Fallopian tube epithelial cell co-culture increases fertilisation rates in male-factor infertility but not in tubal or unexplained infertility. Hum. Reprod. 12, 1253–1258.
| Human Fallopian tube epithelial cell co-culture increases fertilisation rates in male-factor infertility but not in tubal or unexplained infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szmsFSrtQ%3D%3D&md5=b00f285ebb0b6553d737629bc9b28a93CAS | 9222012PubMed |
Kim, N. H., and Menino, A. R. (1995). Effects of stimulators of protein kinase-A and kinase-C and modulators of phosphorylation on plasminogen activator activity in porcine oocyte–cumulus cell complexes during in vitro maturation. Mol. Reprod. Dev. 40, 364–370.
| Effects of stimulators of protein kinase-A and kinase-C and modulators of phosphorylation on plasminogen activator activity in porcine oocyte–cumulus cell complexes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1KhsL4%3D&md5=76b232e8945e77a7741c75b4ecbd8aebCAS | 7772347PubMed |
Kim, H. Y., Sohn, J., Wijewickrama, G. T., Edirisinghe, P., Gherezghiher, T., Hemachandra, M., Lu, P. Y., Chandrasena, R. E., Molloy, M. E., Tonetti, D. A., and Thatcher, G. R. (2010). Click synthesis of oestradiol–cyclodextrin conjugates as cell compartment-selective oestrogens. Bioorg. Med. Chem. 18, 809–821.
| Click synthesis of oestradiol–cyclodextrin conjugates as cell compartment-selective oestrogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot12jug%3D%3D&md5=fce1ce41002b2d4323723aa11c67cc77CAS | 20031420PubMed |
King, S. R., and LaVoie, H. A. (2012). Gonadal transactivation of STARD1, CYP11A1 and HSD3B. Front. Biosci. (Landmark Ed) 17, 824–846.
| Gonadal transactivation of STARD1, CYP11A1 and HSD3B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyhtL3F&md5=aba36f91b4afd368d061398ebd9eed87CAS | 22201776PubMed |
Kobayashi, F., Zimniski, S. J., and Smalley, K. N. (1996). Characterisation of oviductal aromatase in the northern leopard frog, Rana pipens. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 653–657.
| Characterisation of oviductal aromatase in the northern leopard frog, Rana pipens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283gvV2ntw%3D%3D&md5=0292460687cfe522cc3601ce9158492fCAS | 8829814PubMed |
Kouba, A. J., Burkhardt, B. R., Alvarez, I. M., Goodenow, M. M., and Buhi, W. C. (2000). Oviductal plasminogen activator inhibitor-1 (PAI-1): mRNA, protein and hormonal regulation during the oestrous cycle and early pregnancy in the pig. Mol. Reprod. Dev. 56, 378–386.
| Oviductal plasminogen activator inhibitor-1 (PAI-1): mRNA, protein and hormonal regulation during the oestrous cycle and early pregnancy in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFOntrg%3D&md5=e48411207b1c9242245cafdc5fb6dc87CAS | 10862005PubMed |
Krysko, D. V., Vanden Berghe, T., D’Herde, K., and Vandenabeele, P. (2008). Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44, 205–221.
| Apoptosis and necrosis: detection, discrimination and phagocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislWnurk%3D&md5=01b78496f49395dfde381ad31606f254CAS | 18314051PubMed |
LaVoie, H. A., and King, S. R. (2009). Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp. Biol. Med. 234, 880–907.
| Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1WksLs%3D&md5=d5cf632e44ffb116cf9e3d53285d2535CAS |
Leclerc, E., Sakai, Y., and Fujii, T. (2003). Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdevices 5, 109–114.
| Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVemtrY%3D&md5=f2ef351f7c9b799b5573979c842d4c62CAS |
Lei, Z. M., and Rao, C. V. (1992). Expression of epidermal growth factor (EGF) receptor and its ligands, EGF and transforming growth factor-alpha, in human Fallopian tubes. Endocrinology 131, 947–957.
| 1:CAS:528:DyaK38XlsVCgsrk%3D&md5=fe05d62d2cb8dc876f88db4a2937952aCAS | 1639032PubMed |
Leist, M., and Jaattela, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598.
| Four deaths and a funeral: from caspases to alternative mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOqs78%3D&md5=7a543b9cd6f8883160ac179059cacf23CAS | 11483992PubMed |
Lenth, R. V. (2007). Statistical power calculations. J. Anim. Sci. 85, E24–E29.
| Statistical power calculations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7itlWmsQ%3D%3D&md5=a659727829eff5bbc889deefe82f6a0eCAS | 17060421PubMed |
LeRoith, D., Werner, H., Beitnerjohnson, D., and Roberts, C. T. (1995a). Molecular and cellular aspects of the insulin-like growth factor-I receptor. Endocr. Rev. 16, 143–163.
| Molecular and cellular aspects of the insulin-like growth factor-I receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFWisr0%3D&md5=427e9861811a0f13cb34103f353ebdb8CAS | 7540132PubMed |
LeRoith, D., Werner, H., Neuenschwander, S., Kalebic, T., and Helman, L. J. (1995b). The role of the insulin-like growth factor-I receptor in cancer. Ann. N. Y. Acad. Sci. 766, 402–408.
| 1:CAS:528:DyaK28XkvVWkuw%3D%3D&md5=f248740229bfef7a8c25d5a41a356b20CAS | 7486685PubMed |
Levanon, K., Ng, V., Piao, H. Y., Zhang, Y., Chang, M. C., Roh, M. H., Kindelberger, D. W., Hirsch, M. S., Crum, C. P., Marto, J. A., and Drapkin, R. (2010). Primary ex vivo cultures of human Fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene 29, 1103–1113.
| Primary ex vivo cultures of human Fallopian tube epithelium as a model for serous ovarian carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGlur%2FO&md5=10054c72f03bdeee5ba54fe20160d76eCAS | 19935705PubMed |
Li, Y., Qin, L., Xiao, Z. H., Wang, Y. L., Herva, R., Leng, J. H., Lang, J. H., Isomaa, V., and Piao, Y. S. (2003). Expression of P450 aromatase and 17 beta-hydroxysteroid dehydrogenase type 1 at fetal–maternal interface during tubal pregnancy. J. Steroid Biochem. Mol. Biol. 87, 241–246.
| Expression of P450 aromatase and 17 beta-hydroxysteroid dehydrogenase type 1 at fetal–maternal interface during tubal pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSjtbjL&md5=6693296395be291d65e9f5d076b901ecCAS | 14698204PubMed |
Mahmood, T., Saridogan, E., Smutna, S., Habib, A. M., and Djahanbakhch, O. (1998). The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum. Reprod. 13, 2991–2994.
| The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotValtr0%3D&md5=844a08f8107de9f3432b5b93f335169aCAS | 9853843PubMed |
McCue, P. M., and Squires, E. L. (2002). Persistent anovulatory follicles in the mare. Theriogenology 58, 541–543.
| Persistent anovulatory follicles in the mare.Crossref | GoogleScholarGoogle Scholar |
McKinnon, A. O. (1997) Ovarian abnormalities. In ‘Equine Diagnostic Ultrasonography’. (Ed. M. A. O. Ranaten.) pp. 233–251. (Williams and Wilkins: Baltimore.)
Miessen, K., Sharbati, S., Einspanier, R., and Schoen, J. (2011). Modelling the porcine oviduct epithelium: a polarised in vitro system suitable for long-term cultivation. Theriogenology 76, 900–910.
| Modelling the porcine oviduct epithelium: a polarised in vitro system suitable for long-term cultivation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjmsVGhtg%3D%3D&md5=43fe939510bb848a354d43fbb5d480daCAS | 21719086PubMed |
Morishige, K., Kurachi, H., Amemiya, K., Adachi, H., Adachi, K., Sakoyama, Y., Miyake, A., and Tanizawa, O. (1993). Menstrual stage-specific expression of epidermal growth factor and transforming growth factor-alpha in human oviduct epithelium and their role in early embryogenesis. Endocrinology 133, 199–207.
| 1:CAS:528:DyaK3sXlsFaktbk%3D&md5=a838ac1f8698e04e09577211a7a72fceCAS | 8319567PubMed |
Munabi, A. K., Cassorla, F. G., Pfeiffer, D. G., Albertson, B. D., and Loriaux, D. L. (1983). The effects of oestradiol and progesterone on rat ovarian 17-hydroxylase and 3β-hydroxysteroid dehydrogenase activities. Steroids 41, 95–98.
| The effects of oestradiol and progesterone on rat ovarian 17-hydroxylase and 3β-hydroxysteroid dehydrogenase activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsl2hug%3D%3D&md5=32c8a1c7bc6fd3509f48e91a133bf314CAS | 6606868PubMed |
Nelis, H., D’Herde, K., Goossens, K., Vandenberghe, L., Leemans, B., Forier, K., Smits, K., Braeckmans, K., Peelman, L., and Van Soom, A. (2014). Equine oviduct explant culture: a basic model to decipher embryo–maternal communication. Reprod. Fertil. Dev. 26, 954–966.
| Equine oviduct explant culture: a basic model to decipher embryo–maternal communication.Crossref | GoogleScholarGoogle Scholar | 23902648PubMed |
Nelis, H., Vanden Bussche, J., Wojciechowicz, B., Franczak, A., Leemans, B., Vanhaecke, L., Cornillie, P., Peelman, L., Van Soom, A., and Smits, K. (2015). Steroids in the equine oviduct: synthesis, local concentrations and receptor expression. Reprod. Fertil. Dev. , .
| Steroids in the equine oviduct: synthesis, local concentrations and receptor expression.Crossref | GoogleScholarGoogle Scholar | 25751414PubMed |
Nguyen, D. H., Zhou, T., Shu, J., and Mao, J.-H. (2013) Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. In ‘Cancer InCytes. Vol. 2.’ Summer 2013 edn. (Santa Monica)
Nielsen, O. B., de Paoli, F., and Overgaard, K. (2001). Protective effects of lactic acid on force production in rat skeletal muscle. J. Physiol. 536, 161–166.
| Protective effects of lactic acid on force production in rat skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFKqtbk%3D&md5=5e8209bd47a6f622aaf548664e3592d2CAS | 11579166PubMed |
Ohe, T., Hirobe, M., and Mashino, T. (2000). Novel metabolic pathway of oestrone and 17 beta-oestradiol catalysed by cytochrome P-450. Drug Metab. Dispos. 28, 110–112.
| 1:CAS:528:DC%2BD3cXot1Wjug%3D%3D&md5=fc1e10bccd80580d71107db6941be3adCAS | 10640505PubMed |
Page-McCaw, A., Ewald, A. J., and Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221–233.
| Matrix metalloproteinases and the regulation of tissue remodelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVGrs74%3D&md5=e868c741ed249599b81db647cb6f4abcCAS | 17318226PubMed |
Pampfer, S., Tabibzadeh, S., Chuan, F. C., and Pollard, J. W. (1991). Expression of colony-stimulating factor-I (CSF-1) messenger-RNA in human endometrial glands during the menstrual cycle – molecular cloning of a novel transcript that predicts a cell-surface form of CSF-1. Mol. Endocrinol. 5, 1931–1938.
| Expression of colony-stimulating factor-I (CSF-1) messenger-RNA in human endometrial glands during the menstrual cycle – molecular cloning of a novel transcript that predicts a cell-surface form of CSF-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVWksL4%3D&md5=6cb4e9a68fc23cee2e15b36a6aec0ab9CAS | 1791839PubMed |
Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J. D. (1990). Transforming growth factor-beta-1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell Biol. 111, 743–755.
| Transforming growth factor-beta-1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFajs7k%3D&md5=26cdb5dfc29a478024b1d11224878c5aCAS | 1696269PubMed |
Pfeifer, T. L., and Chegini, N. (1994). Immunohistochemical localisation of insulin-like growth factor (IGF-I), IGF-I receptor and IGF-binding proteins-1–4 in human Fallopian tube at various reproductive stages. Biol. Reprod. 50, 281–289.
| Immunohistochemical localisation of insulin-like growth factor (IGF-I), IGF-I receptor and IGF-binding proteins-1–4 in human Fallopian tube at various reproductive stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVeqt7Y%3D&md5=2fb69ba19f28453ef56b3c6213ed34f6CAS | 7511417PubMed |
Pierson, R. A. (1993) Folliculogenesis and ovulation. In ‘Equine Reproduction’. (Ed. V. J. L. McKinnon A.O.) pp. 151–161. (Lea and Febiger: Philadelphia.)
Pierson, R. A., and Ginther, O. J. (1985). Ultrasonic evaluation of the corpus luteum of the mare. Theriogenology 23, 795–806.
| Ultrasonic evaluation of the corpus luteum of the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyitQ%3D%3D&md5=ba75cd91405778dbefeeddec1274aa51CAS | 16726050PubMed |
Rajagopal, M., Tollner, T. L., Finkbeiner, W. E., Cherr, G. N., and Widdicombe, J. H. (2006). Differentiated structure and function of primary cultures of monkey oviductal epithelium. In Vitro Cell. Dev. Biol. Anim. 42, 248–254.
| Differentiated structure and function of primary cultures of monkey oviductal epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jis1WqsQ%3D%3D&md5=a55792f526faf2193404fb2d723f2361CAS | 17163779PubMed |
Richardson, L. L., and Oliphant, G. (1981). Steroid concentrations in rabbit oviductal fluid during oestrus and pseudopregnancy. J. Reprod. Fertil. 62, 427–431.
| Steroid concentrations in rabbit oviductal fluid during oestrus and pseudopregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksF2hsrg%3D&md5=7f8fe5a29b289dab09ff2015765efbb4CAS | 7195938PubMed |
Rodgers, W. H., Matrisian, L. M., Giudice, L. C., Dsupin, B., Cannon, P., Svitek, C., Gorstein, F., and Osteen, K. G. (1994). Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J. Clin. Invest. 94, 946–953.
| Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslKitro%3D&md5=1cee5c40bc6887fd9cb4ce9d20ee0e40CAS | 8083380PubMed |
Roldán-Olarte, M., Jiménez-Díaz, M., and Miceli, D. C. (2005). Plasminogen detection in oocytes and plasminogen activator activities in the porcine oviduct during the oestrous cycle. Zygote 13, 115–123.
| Plasminogen detection in oocytes and plasminogen activator activities in the porcine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 16128407PubMed |
Rose, I. A., and Warms, J. V. B. (1966). Control of glycolysis in human red blood cell. J. Biol. Chem. 241, 4848.
| 1:CAS:528:DyaF28XkvFehtrg%3D&md5=7f206ab838109e1dddb30c4078b06702CAS | 4288723PubMed |
Rottmayer, R., Ulbrich, S. E., Kolle, S., Prelle, K., Neumueller, C., Sinowatz, F., Meyer, H. H. D., Wolf, E., and Hiendleder, S. (2006). A bovine oviduct epithelial cell suspension culture system suitable for studying embryo–maternal interactions: morphological and functional characterisation. Reproduction 132, 637–648.
| A bovine oviduct epithelial cell suspension culture system suitable for studying embryo–maternal interactions: morphological and functional characterisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahs7rJ&md5=9f7be6d73e8d0da6eff37d5bc90d9dedCAS | 17008475PubMed |
Schell, D. L., Mavrogianis, P. A., Fazleabas, A. T., and Verhage, H. G. (1994). Epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor localisation in the baboon (Papio anubis) oviduct during steroid treatment and the menstrual cycle. J. Soc. Gynecol. Investig. 1, 269–276.
| 1:CAS:528:DyaK2MXksFalsrk%3D&md5=f90f7f9b2d0365884f64529aa3289d21CAS | 9419783PubMed |
Schmidt, A., Einspanier, R., Amselgruber, W., Sinowatz, F., and Schams, D. (1994). Expression of insulin-like growth factor-1 (IGF-1) in the bovine oviduct during the oestrous cycle. Exp. Clin. Endocrinol. 102, 364–369.
| Expression of insulin-like growth factor-1 (IGF-1) in the bovine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1SjsL4%3D&md5=12aabab52689f5a0df4e232d313e882bCAS | 7867698PubMed |
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.
| NIH Image to ImageJ: 25 years of image analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKntb7P&md5=b185f20c8797a84cfbb62751d93dfd7cCAS | 22930834PubMed |
Seytanoglu, A., Georgiou, A. S., Sostaric, E., Watson, P. F., Holt, W. V., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
| Oviductal cell proteome alterations during the reproductive cycle in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=e7f065cd453905fae0bd3123fff42765CAS | 18540664PubMed |
Shao, R., Egecioglu, E., Weijdegard, B., Kopchick, J. J., Fernandez-Rodriguez, J., Andersson, N., and Billig, H. (2007). Dynamic regulation of oestrogen receptor-alpha isoform expression in the mouse Fallopian tube: mechanistic insight into oestrogen-dependent production and secretion of insulin-like growth factors. Am. J. Physiol. Endocrinol. Metab. 293, E1430–E1442.
| Dynamic regulation of oestrogen receptor-alpha isoform expression in the mouse Fallopian tube: mechanistic insight into oestrogen-dependent production and secretion of insulin-like growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlenurjO&md5=ae2d4c2d316c5e016215213e6b470b9cCAS | 17848632PubMed |
Simard, J., Ricketts, M. L., Gingras, B., Soucy, P., Feltus, F. A., and Melner, M. H. (2005). Molecular biology of the 3 beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase gene family. Endocr. Rev. 26, 525–582.
| Molecular biology of the 3 beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4) isomerase gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFejt7c%3D&md5=5750f3f01114498780b975ef71481c1eCAS | 15632317PubMed |
Smits, K., Goossens, K., Van Soom, A., Govaere, J., Hoogewijs, M., Vanhaesebrouck, E., Galli, C., Colleoni, S., Vandesompele, J., and Peelman, L. (2009). Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts. BMC Res. Notes 2, 246.
| Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts.Crossref | GoogleScholarGoogle Scholar | 20003356PubMed |
Smits, K., Goossens, K., Van Soom, A., Govaere, J., Hoogewijs, M., and Peelman, L. J. (2011). In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts. Reprod. Fertil. Dev. 23, 364–375.
| In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFeruw%3D%3D&md5=a23375c2383fea71f4e187a44a58c085CAS | 21211470PubMed |
Spilman, C. H., and Wilks, J. W. (1976). Peripheral plasma progesterone during egg transport in rabbit. Proc. Soc. Exp. Biol. Med. 151, 726–729.
| Peripheral plasma progesterone during egg transport in rabbit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhslOlsL0%3D&md5=963fe25a16bae62d231a8a5661e8d4e0CAS | 1265057PubMed |
Stevenson, K. R., and Wathes, D. C. (1996). Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle. J. Reprod. Fertil. 108, 31–40.
| Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFOlu7o%3D&md5=26632536e1f695ed4c30f4eaa7a0e65eCAS | 8958825PubMed |
Stocco, D. M. (2001). StAR protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63, 193–213.
| StAR protein and the regulation of steroid hormone biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKmtLw%3D&md5=8120459c67e64c7781614b6d88064d79CAS | 11181954PubMed |
Stocco, D. M., Wang, X. J., Jo, Y., and Manna, P. R. (2005). Multiple signalling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol. Endocrinol. 19, 2647–2659.
| Multiple signalling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyjsrbJ&md5=18060e08866d6cca0e680d2c79a7786fCAS | 15831519PubMed |
Suarez, S., Redfern, K., Raynor, P., Martin, F., and Phillips, D. M. (1991). Attachment of boar spermatozoa to mucosal explants of ividuct in vitro – possible role in formation of a sperm reservoir. Biol. Reprod. 44, 998–1004.
| Attachment of boar spermatozoa to mucosal explants of ividuct in vitro – possible role in formation of a sperm reservoir.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3MzjvVaguw%3D%3D&md5=731b11e3e4ab968f22d4d20efca4ceb1CAS | 1873399PubMed |
Sukerkar, P. A., MacRenaris, K. W., Townsend, T. R., Ahmed, R. A., Burdette, J. E., and Meade, T. J. (2011). Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone-related cancers. Bioconjug. Chem. 22, 2304–2316.
| Synthesis and biological evaluation of water-soluble progesterone-conjugated probes for magnetic resonance imaging of hormone-related cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Knu7%2FN&md5=340ac28f645f3cf042ff5af08a3f9b21CAS | 21972997PubMed |
Swan, C. L., Agostini, M. C., Bartlewski, P. M., Feyles, V., Urban, R. J., and Chedrese, P. J. (2002). Effects of progestins on progesterone synthesis in a stable porcine granulosa cell line: control of transcriptional activity of the cytochrome P450 side-chain cleavage gene. Biol. Reprod. 66, 959–965.
| Effects of progestins on progesterone synthesis in a stable porcine granulosa cell line: control of transcriptional activity of the cytochrome P450 side-chain cleavage gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCltbw%3D&md5=a7fb67a74144ca4b34b951ad92f60a44CAS | 11906914PubMed |
Szafrańska, B., Ziecik, A., and Okrasa, S. (2002). Primary antisera against selected steroids or proteins and secondary antisera against gamma-globulins – an available tool for studies of reproductive processes. Reprod. Biol. 2, 187–204.
| 14666157PubMed |
Tadokoro, C., Yoshimoto, Y., Sakata, M., Imai, T., Yamaguchi, M., Kurachi, H., Oka, Y., Maeda, T., and Miyake, A. (1995). Expression and localisation of glucose transporter-1 (GLUT1) in the rat oviduct – a possible supplier of glucose to embryo during early embryonic development. Biochem. Biophys. Res. Commun. 214, 1211–1218.
| Expression and localisation of glucose transporter-1 (GLUT1) in the rat oviduct – a possible supplier of glucose to embryo during early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1yhtbw%3D&md5=64a595d73fdfbb6bc7831fa43d1005d7CAS | 7575532PubMed |
Takeda, T., Tsutsumi, Y., Hara, S., and Ida, M. (1978). Effects of prostaglandin-F2-alpha on egg transport and in vivo egg recovery from vaginas of rabbits. Fertil. Steril. 30, 79–85.
| 1:CAS:528:DyaE1cXmtV2lsr4%3D&md5=35ebb2d8b7951714ab3ff2841d846004CAS | 680187PubMed |
Tetsuka, M., Milne, M., and Hillier, S. G. (1998). Expression of oestrogen receptor isoforms in relation to enzymes of oestrogen synthesis in rat ovary. Mol. Cell. Endocrinol. 141, 29–35.
| Expression of oestrogen receptor isoforms in relation to enzymes of oestrogen synthesis in rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlKrsro%3D&md5=d1fe8494a27e69817ef251a8eff4fa51CAS | 9723882PubMed |
Thomas, P. G. A., Ball, B. A., and Brinsko, S. P. (1994). Interaction of equine spermatozoa with oviduct epithelial-cell explants is affected by oestrous cycle and anatomic origin of explant. Biol. Reprod. 51, 222–228.
| Interaction of equine spermatozoa with oviduct epithelial-cell explants is affected by oestrous cycle and anatomic origin of explant.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FjsFGltA%3D%3D&md5=28b9c0e9a896ce1af83475e4cc3e0f9cCAS |
Tibbetts, T. A., Mendoza-Meneses, M., O’Malley, B. W., and Conneely, O. M. (1998). Mutual and intercompartmental regulation of oestrogen receptor and progesterone receptor expression in the mouse uterus. Biol. Reprod. 59, 1143–1152.
| Mutual and intercompartmental regulation of oestrogen receptor and progesterone receptor expression in the mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvF2jsro%3D&md5=310463a396720ba52cc0c8694c192d5bCAS | 9780321PubMed |
Townson, D. H., Wang, X. J., Keyes, P. L., Kostyo, J. L., and Stocco, D. M. (1996). Expression of the steroidogenic acute regulatory protein in the corpus luteum of the rabbit: Dependence upon the luteotropic hormone, estradiol-17 beta. Biol. Reprod. 55, 868–874.
| Expression of the steroidogenic acute regulatory protein in the corpus luteum of the rabbit: Dependence upon the luteotropic hormone, estradiol-17 beta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Gkurg%3D&md5=a663a2a2cfff7272d008d631223a03dfCAS | 8879502PubMed |
Ulbrich, S. E., Kettler, A., and Einspanier, R. (2003). Expression and localisation of oestrogen receptor α, oestrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 84, 279–289.
| Expression and localisation of oestrogen receptor α, oestrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWgs7o%3D&md5=1d5588f04c04e6f5e9837069e51fd9acCAS | 12711014PubMed |
Ullrich, A., Gray, A., Tam, A. W., Yangfeng, T., Tsubokawa, M., Collins, C., Henzel, W., Lebon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J., and Fujitayamaguchi, Y. (1986). Insulin-like growth factor-I receptor primary structure – comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5, 2503–2512.
| 1:CAS:528:DyaL2sXhtl2isw%3D%3D&md5=994c832e06ae46d4d8dbf30d15f1fc74CAS | 2877871PubMed |
Urban, R. J., Garmey, J. C., Shupnik, M. A., and Veldhuis, J. D. (1991). Follicle-stimulating hormone increases concentrations of messenger ribonucleic acid encoding cytochrome-P450 cholesterol side-chain cleavage enzyme in primary cultures of porcine granulosa cells. Endocrinology 128, 2000–2007.
| Follicle-stimulating hormone increases concentrations of messenger ribonucleic acid encoding cytochrome-P450 cholesterol side-chain cleavage enzyme in primary cultures of porcine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVSjsL4%3D&md5=f730c051f8b13043148591d8dcf274bfCAS | 1848508PubMed |
Van den Broeck, W., D’haeseleer, M., Coryn, M., and Simoens, P. (2002). Cell-specific distribution of progesterone receptors in the bovine ovary. Reprod. Domest. Anim. 37, 164–170.
| Cell-specific distribution of progesterone receptors in the bovine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslygtrY%3D&md5=f9c428b1a1c9bbbe5c774d810acdea1bCAS | 12071891PubMed |
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034–research0034.11.
| Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 12184808PubMed |
Vu Hai, M. T., Logeat, F., Warembourg, M., and Milgrom, E. (1977). Hormonal control of progesterone receptors. Annals of the New York Academy of Sciences 286, 199–209.
| Hormonal control of progesterone receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktVSnt78%3D&md5=341c2bba3628f4a6d37cbceedd7ebcedCAS | 281173PubMed |
Walter, I. (1995). Culture of bovine oviduct epithelial cells (BOEC). Anat. Rec. 243, 347–356.
| Culture of bovine oviduct epithelial cells (BOEC).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287ls1alsA%3D%3D&md5=62b5088172043bbe2ca286edb9eb85c2CAS | 8579254PubMed |
Watson, A. J., Barcroft, L. C., Bets, D. H., DeSousa, P. A., Gilfoyle, E., Looye, J., Pierre Louis, J., and Winger, Q. A. (1996). Maternal and embryonic control of bovine pre-attachment development: expression of oviductal and embryonic genes. Archiv Fur Tierzucht 39, 55–69.
Weber, J. A., Freeman, D. A., Vanderwall, D. K., and Woods, G. L. (1991a). Prostaglandin E2 hastens oviductal transport of equine embryos. Biol. Reprod. 45, 544–546.
| Prostaglandin E2 hastens oviductal transport of equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvF2msLs%3D&md5=7c18fd87166f0e7362920d7f354319d5CAS | 1751628PubMed |
Weber, J. A., Freeman, D. A., Vanderwall, D. K., and Woods, G. L. (1991b). Prostaglandin E2 secretion by oviductal transport-stage equine embryos. Biol. Reprod. 45, 540–543.
| Prostaglandin E2 secretion by oviductal transport-stage equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvF2msLo%3D&md5=27853d9f29bf0e9c1ac959f4e61f0777CAS | 1751627PubMed |
Wessel, T., Schuchter, U., and Walt, H. (2004). Ciliary motility in bovine oviducts for sensing rapid non-genomic reactions upon exposure to progesterone. Horm. Metab. Res. 36, 136–141.
| Ciliary motility in bovine oviducts for sensing rapid non-genomic reactions upon exposure to progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFKlsr4%3D&md5=2146ca8890d28d9cc5ff7fdc45ea7ac6CAS | 15057665PubMed |
West, N. B., and Brenner, R. M. (1985). Progesterone-mediated suppression of oestradiol receptors in cynomolgus macaque cervix, endometrium and oviduct during sequential oestradiol–progesterone treatment. J. Steroid Biochem. 22, 29–37.
| Progesterone-mediated suppression of oestradiol receptors in cynomolgus macaque cervix, endometrium and oviduct during sequential oestradiol–progesterone treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1SlsL4%3D&md5=f2d9ee28e01ae65e4f30745c49731d96CAS | 3974227PubMed |
West, N. B., Verhage, H. G., and Brenner, R. M. (1977). Changes in nuclear oestradiol receptor and cell structure during oestrous cycles and pregnancy in oviduct and uterus of cats. Biol. Reprod. 17, 138–143.
| Changes in nuclear oestradiol receptor and cell structure during oestrous cycles and pregnancy in oviduct and uterus of cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlt1Oktr4%3D&md5=aaef37f89eaf251826a151c9897eb664CAS | 884181PubMed |
Wijayagunawardane, M. P. B., Miyamoto, A., Cerbito, W. A., Acosta, T. J., Takagi, M., and Sato, K. (1998). Local distributions of oviductal oestradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology 49, 607–618.
| Local distributions of oviductal oestradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFShu7s%3D&md5=8a9df458be0a8a6dfe143e43f350d4f9CAS |
Wollenhaupt, K., Tiemann, U., Einspanier, R., Schneider, F., Kanitz, W., and Brussow, K. P. (1997). Characterisation of the epidermal growth factor receptor in pig oviduct and endometrium. J. Reprod. Fertil. 111, 173–181.
| Characterisation of the epidermal growth factor receptor in pig oviduct and endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFelsw%3D%3D&md5=7155d37f4dcfaf4c482755bfc5a788d7CAS | 9462283PubMed |
Wollenhaupt, K., Kettler, A., Brüssow, K.-P., Schneider, F., Kanitz, W., and Einspanier, R. (2001). Regulation of the expression and bioactivation of the epidermal growth factor receptor system by oestradiol in pig oviduct and endometrium. Reprod. Fertil. Dev. 13, 167–176.
| Regulation of the expression and bioactivation of the epidermal growth factor receptor system by oestradiol in pig oviduct and endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVWlsbc%3D&md5=f293568e655ae9292e51bdae6e62ed58CAS | 11720134PubMed |
Yamada, M., Horiuchi, T., Oribe, T., Yamamoto, S., Matsushita, H., and Gentry, P. A. (1996). Plasminogen activator activity in the bovine oocyte–cumulus complex and early embryo. J. Vet. Med. Sci. 58, 317–322.
| Plasminogen activator activity in the bovine oocyte–cumulus complex and early embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlegtrg%3D&md5=e3c4c1d0033f10d0a5a00abf4c2d6351CAS | 8741263PubMed |
Zhao, Y., Chegini, N., and Flanders, K. C. (1994). Human Fallopian tube expresses transforming growth factor (TGF-beta) isoforms, TGF-beta Type I–Iii receptor messenger ribonucleic acid and protein and contains [I-125] TGF-beta-binding sites. J. Clin. Endocrinol. Metab. 79, 1177–1184.
| 1:CAS:528:DyaK2cXmvFeltbg%3D&md5=315755bea20e02a97bebe572124fcd18CAS | 7962292PubMed |
Zhao, Y. G., Xiao, A. Z., Cao, X. M., and Zhu, C. (2002). Expression of matrix metalloproteinase-2, -9 and tissue inhibitors of metalloproteinase-1, -2, -3 mRNAs in rat uterus during early pregnancy. Mol. Reprod. Dev. 62, 149–158.
| Expression of matrix metalloproteinase-2, -9 and tissue inhibitors of metalloproteinase-1, -2, -3 mRNAs in rat uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Wmsr0%3D&md5=fe263adddc040a40bcc22c2fd20ce7d7CAS | 11984824PubMed |