Evidence that fibroblast growth factor 10 plays a role in follicle selection in cattle
A. C. S. Castilho A E , C. A. Price B , F. Dalanezi A , R. L. Ereno A , M. F. Machado A , C. M. Barros A , B. G. Gasperin C , P. B. D. Gonçalves C and J. Buratini DA Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Distrito de Rubião Junior, Botucatu, São Paulo 18618-970, Brasil.
B Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 7C6, Canada.
C Laboratório de Biotecnologia e Reprodução Animal, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brasil.
D Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo 18618-970, Brasil.
E Corresponding author. Email: buratini@ibb.unesp.br
Reproduction, Fertility and Development 29(2) 234-243 https://doi.org/10.1071/RD15017
Submitted: 14 January 2015 Accepted: 16 June 2015 Published: 21 July 2015
Abstract
There is evidence that regulation of follicle selection in cattle involves locally produced growth factors. In the present study, we investigated the expression of members of the fibroblast growth factor (FGF) 7 family during follicle deviation. The largest and second largest follicles were recovered during the second day of a synchronised follicle wave and the future dominant and future subordinate follicles were identified based on diameter and cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) mRNA levels in granulosa cells. Theca cells of the future dominant follicle contained less mRNA encoding FGF7 and FGF10 compared with those from the future subordinate follicle 2.5 days after ovulation, before a significant difference between the diameters of the future dominant and future subordinate follicles could be observed, but FGF22 mRNA levels did not change. Levels of mRNA encoding FGF receptors FGFR1B and FGFR2B in theca and granulosa cells, respectively, were lower in the future dominant follicle compared with the future subordinate follicle. Addition of FGF10 to granulosa cells in vitro significantly decreased oestradiol secretion, as well as CYP19A1, FSH receptor (FSHR) and insulin-like growth factor 1 receptor (IGF1R) mRNA abundance, whereas FGF22 had no effect. We conclude that FGF10 and FGFR2B expression is increased in the future subordinate follicle before morphological deviation, which may contribute to follicle selection.
Additional keywords: antral follicles, bovine, deviation, ovary.
References
Armstrong, D. G., Gutierrez, C. G., Baxter, G., Glazyrin, A. L., Mann, G. E., Woad, K. J., Hogg, C. O., and Webb, R. (2000). Expression of mRNA encoding IGF-I, IGF-II and type 1 IGF receptor in bovine ovarian follicles. J. Endocrinol. 165, 101–113.| Expression of mRNA encoding IGF-I, IGF-II and type 1 IGF receptor in bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislSjsb4%3D&md5=2ad280e667bcb4abbc149cc0a3ac5025CAS | 10750040PubMed |
Berisha, B., Sinowatz, F., and Schams, D. (2004). Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Mol. Reprod. Dev. 67, 162–171.
| Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKrsA%3D%3D&md5=c6e3b2194a659ee9bfdafbbfb2872cd0CAS | 14694431PubMed |
Buratini, J., Teixeira, A. B., Costa, I. B., Glapinski, V. F., Pinto, M. G. L., Giometti, I. C., Barros, C. M., Cao, M., Nicola, E. S., and Price, C. A. (2005). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles. Reproduction 130, 343–350.
| Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3I&md5=1a6d91d27872d195b3ae61baf09c5e31CAS | 16123241PubMed |
Buratini, J., Pinto, M. G. L., Castilho, A. C., Amorim, R. L., Giometti, I. C., Portela, V. M., Nicola, E. S., and Price, C. A. (2007). Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2b, in bovine follicles. Biol. Reprod. 77, 743–750.
| Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2b, in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsb3F&md5=213e45da3e92ddd8b526e539f1545795CAS | 17582010PubMed |
Caixeta, E. S., Ripamonte, P., Franco, M. M., Junior, J. B., and Dode, M. A. N. (2009). Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence. Reprod. Fertil. Dev. 21, 655–664.
| Effect of follicle size on mRNA expression in cumulus cells and oocytes of Bos indicus: an approach to identify marker genes for developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrtbc%3D&md5=d7a2ad99c95d2b80e8edbb27c62205edCAS | 19486602PubMed |
Castilho, A. C. S., Bueno da Silva, R., Price, C. A., Machado, M. F., Amorim, R. L., and Buratini, J. (2014). Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary. Theriogenology 81, 1268–1274.
| Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksFWls7s%3D&md5=4c4d1f8339c6de621d4c5d2331b785b9CAS |
Cho, J. H., Itoh, T., Sendai, Y., and Hoshi, H. (2008). Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol. Reprod. Dev. 75, 1736–1743.
| Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsrzO&md5=8d045ed1e8481a7cb453a1ab2bd276adCAS | 18386286PubMed |
Erickson, G. F., and Shimasaki, S. (2003). The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 9.
| The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 12741959PubMed |
Ferreira, R., Gasperin, B., Rovani, M., Santos, J., Barreta, M., Bohrer, R., Price, C., and Gonçalves, P. B. D. (2011). Angiotensin II signaling promotes follicle growth and dominance in cattle. Endocrinology 152, 4957–4965.
| Angiotensin II signaling promotes follicle growth and dominance in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GrtrbM&md5=48b886d9bf71582f27f108f93ebfd930CAS | 22009728PubMed |
Fortune, J. E., Rivera, G. M., Evans, A. C., and Turzillo, A. M. (2001). Differentiation of dominant versus subordinate follicles in cattle. Biol. Reprod. 65, 648–654.
| Differentiation of dominant versus subordinate follicles in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFenu7o%3D&md5=c5e86f88bba909023ef42dd141f6c1adCAS | 11514324PubMed |
Fortune, J. E., Rivera, G. M., and Yang, M. Y. (2004). Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82–83, 109–126.
| Follicular development: the role of the follicular microenvironment in selection of the dominant follicle.Crossref | GoogleScholarGoogle Scholar | 15271447PubMed |
Francavilla, C., Rigbolt, K. T. G., Emdal, K. B., Carraro, G., Vernet, E., Bekker-Jensen, D. B., Streicher, W., Wikström, M., Sundström, M., Bellusci, S., Cavallaro, U., Blagoev, B., and Olsen, J. V. (2013). Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. Mol. Cell 51, 707–722.
| Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWisrjL&md5=1289dfe5c287bd18b2ebf6e96fe60827CAS | 24011590PubMed |
Gasperin, B. G., Ferreira, R., Rovani, M. T., Santos, J. T., Buratini, J., Price, C. A., and Gonçalves, P. B. D. (2012). FGF10 inhibits dominant follicle growth and estradiol secretion in vivo in cattle. Reproduction 143, 815–823.
| FGF10 inhibits dominant follicle growth and estradiol secretion in vivo in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFahs7Y%3D&md5=89daaca6e727cb230bcc595029cd2e37CAS | 22457435PubMed |
Gasperin, B. G., Ferreira, R., Rovani, M. T., Bordignon, V., Duggavathi, R., Buratini, J., Oliveira, J. F. C., and Gonçalves, P. B. D. (2014). Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle. Anim. Reprod. Sci. 144, 72–78.
| Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislymug%3D%3D&md5=0131f7dfd3022f3c0a456b4b7886255fCAS | 24388700PubMed |
Ginther, O. J., Bergfelt, D. R., Beg, M. A., and Kot, K. (2002). Role of low circulating FSH concentrations in controlling the interval to emergence of the subsequent follicular wave in cattle. Reproduction 124, 475–482.
| Role of low circulating FSH concentrations in controlling the interval to emergence of the subsequent follicular wave in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFygtrg%3D&md5=b16b34b4f8cdc2231cb0c0be57fa7b36CAS | 12361465PubMed |
Ginther, O. J., Bergfelt, D. R., Beg, M. A., Meira, C., and Kot, K. (2004). In vivo effects of an intrafollicular injection of insulin-like growth factor 1 on the mechanism of follicle deviation in heifers and mares. Biol. Reprod. 70, 99–105.
| In vivo effects of an intrafollicular injection of insulin-like growth factor 1 on the mechanism of follicle deviation in heifers and mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyr&md5=6608bdd6ffdbf0164377d4f18c1dcacaCAS | 12954722PubMed |
Glister, C., Kemp, C. F., and Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239–254.
| Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrtL8%3D&md5=b2bd83a438cbd94ddf0e71bc8e31320fCAS | 15056790PubMed |
Gutiérrez, C. G., Campbell, B. K., and Webb, R. (1997). Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol. Reprod. 56, 608–616.
| Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics.Crossref | GoogleScholarGoogle Scholar | 9047004PubMed |
Itoh, N., and Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563–569.
| Evolution of the Fgf and Fgfr gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlajsLo%3D&md5=16fd0c33665ea0df996eab2ecedc08e4CAS | 15475116PubMed |
Luo, W., and Wiltbank, M. C. (2006). Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Biol. Reprod. 75, 217–225.
| Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsLg%3D&md5=108ae62fbb3d3bbe3a4443744e51deeaCAS | 16641147PubMed |
Luo, W., Gumen, A., Haughian, J. M., and Wiltbank, M. C. (2011). The role of luteinizing hormone in regulating gene expression during selection of a dominant follicle in cattle. Biol. Reprod. 84, 369–378.
| The role of luteinizing hormone in regulating gene expression during selection of a dominant follicle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVelt78%3D&md5=bd7d2c8134b77bb018923608877a3bd3CAS | 20962252PubMed |
Machado, M. F., Portela, V. M., Price, C. A., da Costa, I. B., Ripamonte, P., Amorim, R. L., and Buratini, J. (2009). Regulation and action of fibroblast growth factor 17 in bovine follicles. J. Endocrinol. 202, 347–353.
| Regulation and action of fibroblast growth factor 17 in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFahtLnN&md5=36cc44f2e908af7351382bc63815adf1CAS | 19535432PubMed |
Makarenkova, H. P., Hoffman, M. P., Beenken, A., Eliseenkova, A. V., Meech, R., Tsau, C., Patel, V. N., Lang, R. A., and Mohammadi, M. (2009). Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal. 2, ra55.
| Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis.Crossref | GoogleScholarGoogle Scholar | 19755711PubMed |
Miura, R., Haneda, S., Lee, H.-H., Miyamoto, A., Shimizu, T., Miyahara, K., Miyake, Y.-I., and Matsui, M. (2014). Evidence that the dominant follicle of the first wave is more active than that of the second wave in terms of its growth rate, blood flow supply and steroidogenic capacity in cows. Anim. Reprod. Sci. 145, 114–122.
| Evidence that the dominant follicle of the first wave is more active than that of the second wave in terms of its growth rate, blood flow supply and steroidogenic capacity in cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGntr8%3D&md5=f17ab2a974e6994e92a034c79ad9865aCAS | 24507076PubMed |
Parrott, J. A., and Skinner, M. K. (1998). Developmental and hormonal regulation of hepatocyte growth factor expression and action in the bovine ovarian follicle. Biol. Reprod. 59, 553–560.
| Developmental and hormonal regulation of hepatocyte growth factor expression and action in the bovine ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVSkurY%3D&md5=3ef94934adcdf2a5aeec260108cb30f0CAS | 9716553PubMed |
Parrott, J. A., Vigne, J. L., Chu, B. Z., and Skinner, M. K. (1994). Mesenchymal–epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells. Endocrinology 135, 569–575.
| 1:CAS:528:DyaK2cXltVSltLY%3D&md5=2eaa727f5a642893b9c4dac6f0232062CAS | 8033804PubMed |
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
| A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=6661679902f6d0d873fb4c32904cbb62CAS | 11328886PubMed |
Ramakers, C., Ruijter, J. M., Deprez, R. H., and Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.
| Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kks70%3D&md5=bd5ae1c6f32a4c7c01930b6717da6961CAS | 12618301PubMed |
Sartorelli, E. S., Carvalho, L. M., Bergfelt, D. R., Ginther, O. J., and Barros, C. M. (2005). Morphological characterization of follicle deviation in Nelore (Bos indicus) heifers and cows. Theriogenology 63, 2382–2394.
| Morphological characterization of follicle deviation in Nelore (Bos indicus) heifers and cows.Crossref | GoogleScholarGoogle Scholar | 15910921PubMed |
Satrapa, R. A., Razza, E. M., Castilho, A. C. S., Simões, R. A. L., Silva, C. F., Nabhan, T., Pegorer, M. F., and Barros, C. M. (2013). Differential expression of IGF family members in heat-stressed embryos produced in vitro from OPU-derived oocytes of Nelore (Bos indicus) and Holstein (Bos taurus) cows. Reprod. Domest. Anim. 48, 1043–1048.
| Differential expression of IGF family members in heat-stressed embryos produced in vitro from OPU-derived oocytes of Nelore (Bos indicus) and Holstein (Bos taurus) cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKnsrvF&md5=95640901e4d631b8fdfeea057fd1281eCAS | 23889323PubMed |
Scaramuzzi, R. J., Baird, D. T., Campbell, B. K., Driancourt, M.-A., Dupont, J., Fortune, J. E., Gilchrist, R. B., Martin, G. B., McNatty, K. P., McNeilly, A. S., Monget, P., Monniaux, D., Viñoles, C., and Webb, R. (2011). Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod. Fertil. Dev. 23, 444–467.
| Regulation of folliculogenesis and the determination of ovulation rate in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12ntLg%3D&md5=d250734c3e9c9baef1d84ebc61c9998eCAS | 21426863PubMed |
Silva, J. M., and Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. Biol. Reprod. 62, 186–191.
| Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKkug%3D%3D&md5=2393c09b1bc4b160b1e50dcd5e8e78f5CAS | 10611084PubMed |
Sirois, J., and Fortune, J. E. (1988). Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography. Biol. Reprod. 39, 308–317.
| Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1eksbc%3D&md5=f71538d05412c32bd23646f75f4aa4beCAS | 3052602PubMed |
Spicer, L. J., and Aad, P. Y. (2007). Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biol. Reprod. 77, 18–27.
| Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF1 receptor: role of follicle-stimulating hormone and IGF2 receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gsbo%3D&md5=4396e4148a2b1c5f8e02240eaa06e65dCAS | 17360960PubMed |
Spicer, L. J., Alpizar, E., and Vernon, R. K. (1994). Insulin-like growth factor-I receptors in ovarian granulosa cells: effect of follicle size and hormones. Mol. Cell. Endocrinol. 102, 69–76.
| Insulin-like growth factor-I receptors in ovarian granulosa cells: effect of follicle size and hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1Oktbk%3D&md5=2ee1c9549e8a0c061d01dda8f3036affCAS | 7926275PubMed |
Stewart, R. E., Spicer, L. J., Hamilton, T. D., Keefer, B. E., Dawson, L. J., Morgan, G. L., and Echternkamp, S. E. (1996). Levels of insulin-like growth factor (IGF) binding proteins, luteinizing hormone and IGF-I receptors, and steroids in dominant follicles during the first follicular wave in cattle exhibiting regular estrous cycles. Endocrinology 137, 2842–2850.
| 1:CAS:528:DyaK28XjvVWjtrY%3D&md5=dedca5b2d3f6a85a7efbd96fcbb17beaCAS | 8770905PubMed |
Sudo, N., Shimizu, T., Kawashima, C., Kaneko, E., Tetsuka, M., and Miyamoto, A. (2007). Insulin-like growth factor-I (IGF-I) system during follicle development in the bovine ovary: relationship among IGF-I, type 1 IGF receptor (IGFR-1) and pregnancy-associated plasma protein-A (PAPP-A). Mol. Cell. Endocrinol. 264, 197–203.
| Insulin-like growth factor-I (IGF-I) system during follicle development in the bovine ovary: relationship among IGF-I, type 1 IGF receptor (IGFR-1) and pregnancy-associated plasma protein-A (PAPP-A).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsl2huw%3D%3D&md5=286f3f2143d734be06afcfdfd9d5d024CAS | 17116363PubMed |
Wolfenson, D., Sonego, H., Shaham-Albalancy, A., Shpirer, Y., and Meidan, R. (1999). Comparison of the steroidogenic capacity of bovine follicular and luteal cells, and corpora lutea originating from dominant follicles of the first or second follicular wave. J. Reprod. Fertil. 117, 241–247.
| Comparison of the steroidogenic capacity of bovine follicular and luteal cells, and corpora lutea originating from dominant follicles of the first or second follicular wave.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOqsLk%3D&md5=bba2f8cf65860cb6994e96bc79474b94CAS | 10690191PubMed |
Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., and Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15 694–15 700.
| Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cktrc%3D&md5=9b33b3c6d649aed0d54e1514bd018b14CAS |