Subtraction suppressive hybridisation analysis of differentially expressed genes associated with puberty in the goat hypothalamus
G. L. Cao A B , T. Feng A C , M. X. Chu A D , R. Di A , Y. L. Zhang B , D. W. Huang A , Q. Y. Liu A , W. P. Hu A and X. Y. Wang AA Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
B College of Agriculture, Liaocheng University, Liaocheng 252059, China.
C Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
D Corresponding author. Email: mxchu@263.net
Reproduction, Fertility and Development 28(11) 1781-1787 https://doi.org/10.1071/RD14434
Submitted: 10 November 2014 Accepted: 13 April 2015 Published: 15 May 2015
Abstract
The cost of developing replacement nanny goats could be reduced by decreasing the age at puberty because this way nanny goats could be brought into production at an earlier age. The aim of the present study was to screen genes related to puberty to investigate the molecular mechanisms of puberty. Subtracted cDNA libraries were constructed for hypothalami from juvenile (Group A), pubertal (Group B) and age-matched control pubertal (Group E) Jining grey (JG) and Liaoning cashmere (LC) goats using suppression subtractive hybridisation (SSH). Differentially expressed genes were analysed by bioinformatics methods. There were 203 expressed sequence tags (ESTs) in the subtracted cDNA libraries that were differentially expressed between JG and LC goats at the juvenile stage, 226 that were differentially expressed at puberty and 183 that were differentially expressed in the age-matched control group. The differentially expressed ESTs in each subtracted cDNA library were classified as known gene, known EST and unknown EST according to sequence homology in the GenBank non-redundant (NR) and EST database. According to gene function analysis in the COG (Cluster of Orthologous Groups) database, the known genes were grouped into 10 subdivisions in Group A, into seven subdivisions in Group E and into nine subdivisions in Group B under three categories: cellular processes and signalling, information storage and processing, and metabolism. Pathway analysis in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database of known genes revealed that the three pathways that most differentially expressed genes were involved in were metabolic pathways, Parkinson’s disease and oxidative phosphorylation. Protein interaction analysis of the high homology genes revealed the most dominant network to be structure of ribosome/protein translation, oxidative phosphorylation and carbohydrate metabolism. The results reveal that the onset of puberty is a complex event involving multiple genes in multiple biological processes. The differentially expressed genes include genes related to both neuroendocrine and energy metabolism.
Additional keywords: bioinformatic analysis, carbohydrate metabolism, energy metabolism, GNAS, Gria 3, onset of puberty, oxidative phosphorylation, subtracted cDNA library.
References
Aittomäki, K., Lucena, J. L., Pakarinen, P., Sistonen, P., Tapanainen, J., Gromoll, J., Kaskikari, R., Sankila, E. M., Lehvaslaiho, H., Engel, A. R., Nieschlag, R., Huhtaniemi, I., and de la Chapelle, A. (1995). Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968.| Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure.Crossref | GoogleScholarGoogle Scholar | 7553856PubMed |
Aittomäki, K., Herva, R., Stenman, U. H., Juntunen, K., Ylostalo, P., Hovatta, O., and de la Chapelle, A. (1996). Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J. Clin. Endocrinol. Metab. 81, 3722–3726.
| 8855829PubMed |
Bastepe, M., and Juppner, H. (2005). GNAS locus and pseudohypoparathyroidism. Horm. Res. 63, 65–74.
| GNAS locus and pseudohypoparathyroidism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVWlsLk%3D&md5=581c16fb1687eb052189f9a6de21a2a9CAS | 15711092PubMed |
Campbell, R., Gosden, C. M., and Bonthron, D. T. (1994). Parental origin of transcription from the human GNAS1 gene. J. Med. Genet. 31, 607–614.
| Parental origin of transcription from the human GNAS1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlCit78%3D&md5=903abe19a3a21eaf832bb773b3f904bfCAS | 7815417PubMed |
China National Commission of Animal Genetic Resources. (2011). ‘Animal Genetic Resources in China, Sheep and Goat.’ (China Agriculture Press: Beijing.)
de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl Acad. Sci. USA 100, 10 972–10 976.
| Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyntbc%3D&md5=420c0c9ea19b2695c18c09c0d7631e7eCAS |
Gécz, J., Barnett, S., Liu, J., Hollway, G., Donnelly, A., Eyre, H., Eshkevari, H. S., Baltazar, R., Grunn, A., Nagaraja, R., Gilliam, C., Peltonen, L., Sutherland, G. R., Baron, M., and Mulley, J. C. (1999). Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation. Genomics 62, 356–368.
| Characterization of the human glutamate receptor subunit 3 gene (GRIA3), a candidate for bipolar disorder and nonspecific X-linked mental retardation.Crossref | GoogleScholarGoogle Scholar | 10644433PubMed |
Hayward, B. E., Barlier, A., Korbonits, M., Grossman, A. B., Jacquet, P., Enjalbert, A., and Bonthron, D. T. (2001). Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Invest. 107, R31–R36.
| Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVGnsL0%3D&md5=ef7c907374e8dfe8fa1ed66030b3d6f1CAS | 11254676PubMed |
He, C., Kraft, P., Chen, C., Buring, J. E., Paré, G., Hankinson, S. E., Chanock, S. J., Ridker, P. M., Hunter, D. J., and Chasman, D. I. (2009). Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 41, 724–728.
| Genome-wide association studies identify loci associated with age at menarche and age at natural menopause.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOrur0%3D&md5=bfd1dfde97116790d35c2cf874ef84e8CAS | 19448621PubMed |
Iiri, T., Herzmark, P., Nakamoto, J. M., Dop, C. V., and Bourne, H. R. (1994). Rapid GDP release from Gsα in patients with gain and loss of endocrine function. Nature 371, 164–168.
| Rapid GDP release from Gsα in patients with gain and loss of endocrine function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2czlt1CisQ%3D%3D&md5=58c986347005b2bad3d3b73cf86a758dCAS | 8072545PubMed |
Jackson, R. S., Creemers, J. W. M., Ohagi, S., Raffin-Sanson, M. L., Sanders, L., Montague, C. T., Hutton, J. C., and O’Rahilly, S. (1997). Obesity and impaired prohormone processing associated with mutations in the human convertase 1 gene. Nat. Genet. 16, 303–306.
| Obesity and impaired prohormone processing associated with mutations in the human convertase 1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFGntLY%3D&md5=93790e67917189edebf38b5331f8b476CAS | 9207799PubMed |
Krewson, T. D., Supelak, P. J., Hill, A. E., Singer, J. B., Lander, E. S., Nadeau, J. H., and Palmert, M. R. (2004). Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology 145, 4447–4451.
| Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOqt74%3D&md5=9b1b9c3c9ce3501363f0756a06361f5bCAS | 15284200PubMed |
Krsmanovic, L. Z., Hu, L., Leung, P. K., Feng, H., and Catt, K. Z. (2009). The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol. Metab. 20, 402–408.
| The hypothalamic GnRH pulse generator: multiple regulatory mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wnu7bN&md5=5c01f987a7e91a93f39e859fdf55ab17CAS | 19740674PubMed |
Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., and Seminara, S. B. (2007). Kiss1–/– mice exhibit more variable hypogonadism than Gpr54–/– mice. Endocrinology 148, 4927–4936.
| Kiss1–/– mice exhibit more variable hypogonadism than Gpr54–/– mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWls7bM&md5=182de9c38bb2131f8b5a017b2fadcf9eCAS | 17595229PubMed |
Lin, L., Conway, G. S., Hill, N. R., Dattani, M. T., Hindmarsh, P. C., and Achermann, J. C. (2006). A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oligospermia. J. Clin. Endocrinol. Metab. 91, 5117–5121.
| A homozygous R262Q mutation in the gonadotropin-releasing hormone receptor presenting as constitutional delay of growth and puberty with subsequent borderline oligospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGru7jI&md5=345d2faf53ee8dc957b1bc0cbc9af0a2CAS | 16968799PubMed |
Liu, J., Nealon, J. G., and Weinstein, L. S. (2005). Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum. Mol. Genet. 14, 95–102.
| Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFGmug%3D%3D&md5=30d222d409e38b5e622aeaf77b2daa1eCAS | 15537666PubMed |
Mantovani, G., Ballare, E., Giammona, E., Beck-Peccoz, P., and Spada, A. (2002). The Gsα gene: predominant maternal origin of transcription in human thyroid gland and gonads. J. Clin. Endocrinol. Metab. 87, 4736–4740.
| The Gsα gene: predominant maternal origin of transcription in human thyroid gland and gonads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFCrsbY%3D&md5=6d19447cb673bd90f4766ceb7dc81514CAS | 12364467PubMed |
Mantovani, G., Bndioni, S., Lania, A. G., Corbetta, S., Sanctis, L. D., Cappa, M., Battista, E. D., Chanson, P., Beck-Peccoz, P., and Spada, A. (2004). Parental origin of Gsα mutations in the McCune–Albright syndrome and in isolated endocrine tumors. J. Clin. Endocrinol. Metab. 89, 3007–3009.
| Parental origin of Gsα mutations in the McCune–Albright syndrome and in isolated endocrine tumors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKjsLs%3D&md5=3fe1f7e98e6867d120c668a4c4614809CAS | 15181091PubMed |
Mariot, V., Wu, J. Y., Aydin, C., Mantovani, G., Mahon, M. J., Linglar, A., and Bastepe, M. (2011). Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune–Albright syndrome and fibrous dysplasia of bone. Bone 48, 312–320.
| Potent constitutive cyclic AMP-generating activity of XLαs implicates this imprinted GNAS product in the pathogenesis of McCune–Albright syndrome and fibrous dysplasia of bone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvF2luw%3D%3D&md5=82b79675063c816b5ab767019f1cbed3CAS | 20887824PubMed |
Mehlmann, L. M., Jones, T. L., and Jaffe, L. A. (2002). Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science 297, 1343–1345.
| Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1ejtbY%3D&md5=b61a3c0a540eb73f0d7db8de016a4f68CAS | 12193786PubMed |
Mehlmann, L. M., Saeki, Y., Tanaka, S., Brennan, T. J., Evsikov, A. V., Pendola, F. L., Knowles, B. B., Eppig, J. J., and Jaffe, L. A. (2004). The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science 306, 1947–1950.
| The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCqtbvE&md5=f2286891d51c88ba9db6de62f7872610CAS | 15591206PubMed |
Meredith, S., and Kiesling, D. O. (1996). Age of puberty in ewes which developed prenatally with either a ram or a ewe fetus. Small Rumin. Res. 20, 137–140.
| Age of puberty in ewes which developed prenatally with either a ram or a ewe fetus.Crossref | GoogleScholarGoogle Scholar |
O’Rahilly, S., Gray, H., Humphreys, P. J., Krook, A., Polonsky, K. S., White, A., Gibson, S., Taylor, K., and Carr, C. (1995). Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N. Engl. J. Med. 333, 1386–1391.
| Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FktlKnsA%3D%3D&md5=a621f23be2f8533eefb325239083fdb3CAS | 7477119PubMed |
Ojeda, S. R., Lomniczi, A., Mastronardi, C., Heger, S., Roth, C., Parent, A. S., Matagne, V., and Mungenast, A. E. (2006). The neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147, 1166–1174.
| The neuroendocrine regulation of puberty: is the time ripe for a systems biology approach?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFygtrw%3D&md5=a865e3782afbfce59877677c7a7ccb8cCAS | 16373420PubMed |
Ojeda, S. R., Dubay, C., Lomniczi, A., Kaidar, G., Matagne, V., Sandau, U. S., and Dissen, G. A. (2010). Gene networks and the neuroendocrine regulation of puberty. Mol. Cell. Endocrinol. 324, 3–11.
| Gene networks and the neuroendocrine regulation of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWru7g%3D&md5=b8844636a15d9527a67d31779502bd6eCAS | 20005919PubMed |
Ong, K. K., Elks, C. E., Li, S., Zhao, J. H., Luan, J., Andersen, L. B., Bingham, S. A., Brage, S., Smith, G. D., Ekelund, U., Gillson, C. J., Glaser, B., Golding, J., Hardy, R., Khaw, K. T., Kuh, D., Luben, R., Marcus, M., McGeehin, M. A., Ness, A. R., Northstone, K., Ring, S. M., Rubin, C., Sims, M. A., Song, K., Strachan, D. P., Vollenweider, P., Waeber, G., Waterworth, D. M., Wong, A., Deloukas, P., Barroso, I., Mooser, V., Loos, R. J., and Wareham, N. J. (2009). Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–733.
| Genetic variation in LIN28B is associated with the timing of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOrsLk%3D&md5=a7aa033168537db007909d2624c7517eCAS | 19448623PubMed |
Palmert, M. R., and Hirschhorn, J. N. (2003). Genetic approaches to stature, pubertal timing, and other complex traits. Mol. Genet. Metab. 80, 1–10.
| Genetic approaches to stature, pubertal timing, and other complex traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVChsb8%3D&md5=48c70ccf5dc143dc6bd1f60817ee872dCAS | 14567953PubMed |
Parent, A. S., Teilmann, G., Juul, A., Skakkebaek, N. E., Toppari, J., and Bourguignon, J. P. (2003). The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693.
| The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration.Crossref | GoogleScholarGoogle Scholar | 14570750PubMed |
Perry, J. R., Stolk, L., Franceschini, N., Lunetta, K. L., Zhai, G., McArdle, P. F., Smith, A. V., Aspelund, T., Bandinelli, S., Boerwinkle, E., Cherkas, L., Eiriksdottir, G., Estrada, K., Ferrucci, L., Folsom, A. R., Garcia, M., Gudnason, V., Hofman, A., Karasik, D., Kiel, D. P., Launer, L. J., van Meurs, J., Nalls, M. A., Rivadeneira, F., Shuldiner, A. R., Singleton, A., Soranzo, N., Tanaka, T., Visser, J. A., Weedon, M. N., Wilson, S. G., Zhuang, V., Streeten, E. A., Harris, T. B., Murray, A., Spector, T. D., Demerath, E. W., Uitterlinden, A. G., and Murabito, J. M. (2009). Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650.
| Meta-analysis of genome-wide association data identifies two loci influencing age at menarche.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOrtL0%3D&md5=c9a1c306d159960d78f3744666e664f0CAS | 19448620PubMed |
Plant, T. M., and Barker-Gibb, M. L. (2004). Neurobiological mechanisms of puberty in higher primates. Hum. Reprod. Update 10, 67–77.
| Neurobiological mechanisms of puberty in higher primates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislygtr4%3D&md5=ef130255810e9bd7690ce2be2fa67dbdCAS | 15005465PubMed |
Riminucci, M., Fisher, L. W., Majolagbe, A., Corsi, A., Lala, R., Sanctis, C. D., Robey, P. G., and Bianco, P. (1999). A novel GNAS1 mutation, R201G, in McCune–Albright syndrome. J. Bone Miner. Res. 14, 1987–1989.
| A novel GNAS1 mutation, R201G, in McCune–Albright syndrome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FktVyjsg%3D%3D&md5=1aa677ced6a4a1d475604c88bb3453abCAS | 10571700PubMed |
Rogers, S. W., Andrews, P. I., Gahring, L. C., Whisenand, T., Cauley, K., Crain, B., Hughes, T. E., Heinemann, S. F., and McNamara, J. O. (1994). Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265, 648–651.
| Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVKns70%3D&md5=f45e3ef4196fdf16d5cc761659adeb38CAS | 8036512PubMed |
Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., and Hendrick, A. G. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627.
| The GPR54 gene as a regulator of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrsr8%3D&md5=d8fe7f90d88befce68bf9ba098f1fc1dCAS | 14573733PubMed |
Sulem, P., Gudbjartsson, D. F., Rafnar, T., Holm, H., Olafsdottir, E. J., Olafsdottir, G. H., Jonsson, T., Alexandersen, P., Feenstra, B., Boyd, H. A., Aben, K. K., Verbeek, A. L., Roeleveld, N., Jonasdottir, A., Styrkarsdottir, U., Steinthorsdottir, V., Karason, A., Stacey, S. N., Gudmundsson, J., Jakobsdottir, M., Thorleifsson, G., Hardarson, G., Gulcher, J., Kong, A., Kiemeney, L. A., Melbye, M., Christiansen, C., Tryggvadottir, L., Thorsteinsdottir, U., and Stefansson, K. (2009). Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41, 734–738.
| Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOrsbc%3D&md5=18640b7906ffa119b3d8e9b5cea37a97CAS | 19448622PubMed |
Topaloglu, A. K., Reimann, F., Guclu, M., Yalin, A. S., Kotan, L. D., Porter, K. M., Serin, A., Mungan, N. O., Cook, J. R., Ozbek, M. N., Imamoglu, S., Akalin, N. S., Yuksel, B., O’Rahilly, S., and Semple, R. K. (2009). TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358.
| TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for neurokinin B in the central control of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSi&md5=efeee8a051f44234b6edb81c332aaf90CAS | 19079066PubMed |
Wagoner, H. A., Steinmetz, R., Bethin, K. E., Eugster, E. A., Pescovitz, O. H., and Hannon, T. S. (2007). GNAS mutation detection is related to disease severity in girls with McCune–Albright syndrome and precocious puberty. Pediatr. Endocrinol. Rev. 4, 395–400.
| 17982386PubMed |
Xin, X., Luan, X., Xiao, J., Wei, D., Wang, J., Lub, D., and Yang, S. (2005). Association study of four activity SNPs of CYP3A4 with the precocious puberty in Chinese girls. Neurosci. Lett. 381, 284–288.
| Association study of four activity SNPs of CYP3A4 with the precocious puberty in Chinese girls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Ggtrw%3D&md5=1a37a90d714833ec0091518e40803ef2CAS | 15896485PubMed |
Zhang, S. W. (2009). ‘Annals of Farm Animal Breeds in Liaoning Province.’ (Liaoning Science and Technology Publishing House: Liaoning.)