Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression and immunolocalisation of follicle-stimulating hormone receptors in gonads of newborn and adult female horses

Dragos Scarlet A C , Ingrid Walter B , Juraj Hlavaty B and Christine Aurich A
+ Author Affiliations
- Author Affiliations

A Centre for Artificial Insemination and Embryo Transfer, University for Veterinary Sciences Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.

B Institute of Anatomy, Histology and Embryology, University for Veterinary Sciences Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.

C Corresponding author. Email: dragos.scarlet@vetmeduni.ac.at

Reproduction, Fertility and Development 28(9) 1340-1348 https://doi.org/10.1071/RD14392
Submitted: 15 October 2014  Accepted: 15 January 2015   Published: 19 February 2015

Abstract

In mares, FSH and its receptor (FSHR) are essential for ovarian function. The objective of the present study was to analyse FSHR gene expression at the mRNA and protein levels in ovarian tissue from newborn and adult horses. Expression of mRNA was analysed by reverse transcription polymerase chain reaction, whereas FSHR protein was visualised by immunohistochemistry (IHC), immunofluorescence labelling (IF) and western blot. FSHR mRNA was detected in ovarian follicles and luteal tissue from adult mares, as well as in the ovaries of neonates. Follicular growth up to 4 mm in diameter was already present in neonates. Using IHC and IF, FSHR protein was detected in granulosa cells, cumulus cells and inconsistently in oocytes, independent of the animal’s age or the stage of folliculogenesis. A lower FSHR expression was observed in theca cells in comparison to granulosa cells. FSHR was abundant in the ovarian stroma cells of neonates but not of adults. Luteal cells stained positive for FSHR independent of the stage of corpus luteum development. The presence of FSHR protein in various cell populations of the ovary was confirmed by western blot. In conclusion, FSHR is present in horse ovaries consistently from birth onwards and expression remains constant during the oestrous cycle.

Additional keywords: filly, FSHR, mare, mRNA, ovary, protein.


References

Aurich, C. (2011). Reproductive cycles of horses. Anim. Reprod. Sci. 124, 220–228.
Reproductive cycles of horses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtbk%3D&md5=16115c37fe37aba058a56272a2364cb6CAS | 21377299PubMed |

Barros, V. R. P., Cavalcante, A. Y. P., Macedo, T. J. S., Barberino, R. S., Lins, T. L. B., Gouveia, B. B., Menezes, V. G., Queiroz, M. A. A., Araújo, V. R., Palheta, R. C., Leite, M. C. P., and Matos, M. H. T. (2013). Immunolocalisation of melatonin and follicle-stimulating hormone receptors in caprine ovaries and their effects during in vitro development of isolated pre-antral follicles. Reprod. Domest. Anim. 48, 1025–1033.
Immunolocalisation of melatonin and follicle-stimulating hormone receptors in caprine ovaries and their effects during in vitro development of isolated pre-antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKnsrzP&md5=2691ef40d69c82ca8bf06060234c7813CAS |

Beg, M. A., and Ginther, O. J. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132, 365–377.
Follicle selection in cattle and horses: role of intrafollicular factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt77F&md5=485347c17ca5bb51263f3ca4e39eae6dCAS | 16940278PubMed |

Bergfelt, D. R., and Ginther, O. J. (1985). Delayed follicular development and ovulation following inhibition of FSH with equine follicular fluid in the mare. Theriogenology 24, 99–108.
Delayed follicular development and ovulation following inhibition of FSH with equine follicular fluid in the mare.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVyhuw%3D%3D&md5=d0e77ab379737b109246f0665cc4f48eCAS | 16726062PubMed |

Bergfelt, D. R., Mann, B. G., Schwartz, N. B., and Ginther, O. J. (1991). Circulating concentrations of immunoreactive inhibin and FSH during the oestrous cycle of mares. J. Equine Vet. Sci. 11, 319–322.
Circulating concentrations of immunoreactive inhibin and FSH during the oestrous cycle of mares.Crossref | GoogleScholarGoogle Scholar |

Cole, H. H., Hart, G. H., Lyons, W. R., and Catchpole, H. R. (2005). The development and hormonal content of fetal horse gonads. Anat. Rec. 56, 275–293.
The development and hormonal content of fetal horse gonads.Crossref | GoogleScholarGoogle Scholar |

Cortvrindt, R., Smitz, J., and Van Steirteghem, A. C. (1997). Assessment of the need for follicle-stimulating hormone in early preantral mouse follicle culture in vitro. Hum. Reprod. 12, 759–768.
Assessment of the need for follicle-stimulating hormone in early preantral mouse follicle culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsF2ntLk%3D&md5=40c57e90e18de6c0d30ce74384a93da3CAS | 9159439PubMed |

Deanesly, R. (1975). Germ cell development and the meiotic prophase in the fetal horse ovary. J. Reprod. Fertil. Suppl. 23, 547–552.
| 1060842PubMed |

Dell’Aquila, M. E., Caillaud, M., Maritato, F., Martoriati, A., Gérard, N., Aiudi, G., Minoia, P., and Goudet, G. (2004). Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus–oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis. Reprod. Biol. Endocrinol. 2, 44.
Cumulus expansion, nuclear maturation and connexin 43, cyclooxygenase-2 and FSH receptor mRNA expression in equine cumulus–oocyte complexes cultured in vitro in the presence of FSH and precursors for hyaluronic acid synthesis.Crossref | GoogleScholarGoogle Scholar | 15212696PubMed |

Donadeu, F. X., and Pedersen, H. G. (2008). Follicle development in mares. Reprod. Domest. Anim. 43, 224–231.
Follicle development in mares.Crossref | GoogleScholarGoogle Scholar | 18638128PubMed |

Driancourt, M. A., Paris, A., Roux, C., Mariana, J. C., and Palmer, E. (1982). Ovarian follicular populations in pony and saddle-type mares. Reprod. Nutr. Dev. 22, 1035–1047.
Ovarian follicular populations in pony and saddle-type mares.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7ksFOjsg%3D%3D&md5=ace5bb7037b5ba20202070af112ed77eCAS | 7163613PubMed |

Durlej, M., Knapczyk-Stwora, K., Duda, M., Galas, J., and Slomczynska, M. (2011). The expression of FSH receptor (FSHR) in the neonatal porcine ovary and its regulation by flutamide. Reprod. Domest. Anim. 46, 377–384.
The expression of FSH receptor (FSHR) in the neonatal porcine ovary and its regulation by flutamide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVGrurs%3D&md5=f31f7e0a7517ddf0886ede8038b69bcbCAS | 20642491PubMed |

Fay, J. E., and Douglas, R. H. (1987). Changes in thecal and granulosa cell LH and FSH receptor content associated with follicular fluid and peripheral plasma gonadotrophin and steroid hormone concentrations in preovulatory follicles of mares. J. Reprod. Fertil. Suppl. 35, 169–181.
| 1:CAS:528:DyaL1cXnsV0%3D&md5=4f81a136bef3969be75505d314cf7d17CAS | 3119827PubMed |

Gastal, E. L., Gastal, M. O., Bergfelt, D. R., and Ginther, O. J. (1997). Role of diameter differences among follicles in selection of a future dominant follicle in mares. Biol. Reprod. 57, 1320–1327.
Role of diameter differences among follicles in selection of a future dominant follicle in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVWgur0%3D&md5=c1a841505a93e2237e63693726d9315cCAS | 9408236PubMed |

Ginther, O. J., Beg, M. A., Donadeu, F. X., and Bergfelt, D. R. (2003). Mechanism of follicle deviation in monovular farm species. Anim. Reprod. Sci. 78, 239–257.
Mechanism of follicle deviation in monovular farm species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gtro%3D&md5=213574f9a815955ec449b169d45542bbCAS | 12818647PubMed |

Hay, M. F., and Allen, W. R. (1975). An ultrastructural and histochemical study of the interstitial cells in the gonads of the fetal horse. J. Reprod. Fertil. Suppl. 23, 557–561.
| 1:CAS:528:DyaE28XivVKisw%3D%3D&md5=ac5a96acf07f206b660e29befd4ec76fCAS | 1060844PubMed |

Heckert, L. L., and Griswold, M. D. (1991). Expression of follicle-stimulating hormone receptor mRNA in rat testes and Sertoli cells. Mol. Endocrinol. 5, 670–677.
Expression of follicle-stimulating hormone receptor mRNA in rat testes and Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1altLY%3D&md5=68980e15a3ae8cd0d986931295fee6adCAS | 2072927PubMed |

King, S. S., Jones, K. L., Mullenix, B. A., and Heath, D. T. (2008). Seasonal relationships between dopamine D1 and D2 receptor and equine FSH receptor mRNA in equine ovarian epithelium. Anim. Reprod. Sci. 108, 259–266.
Seasonal relationships between dopamine D1 and D2 receptor and equine FSH receptor mRNA in equine ovarian epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtLbJ&md5=00b73f81bad916040524a840802ef81cCAS | 17935915PubMed |

Kraaij, R., Verhoef-Post, M., Grootegoed, J. A., and Themmen, A. P. (1998). Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterisation of two alternatively spliced mRNA transcripts. J. Endocrinol. 158, 127–136.
Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterisation of two alternatively spliced mRNA transcripts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVamtb4%3D&md5=069a4de1c2a95f8b8b3a6f63313d7020CAS | 9713334PubMed |

Méduri, G., Charnaux, N., Driancourt, M. A., Combettes, L., Granet, P., Vannier, B., Loosfelt, H., and Milgrom, E. (2002). Follicle-stimulating hormone receptors in oocytes? J. Clin. Endocrinol. Metab. 87, 2266–2276.
Follicle-stimulating hormone receptors in oocytes?Crossref | GoogleScholarGoogle Scholar | 11994374PubMed |

Minegishi, T., Tano, M., Igarashi, M., Rokukawa, S., Abe, Y., Ibuki, Y., and Miyamoto, K. (1997). Expression of follicle-stimulating hormone receptor in human ovary. Eur. J. Clin. Invest. 27, 469–474.
Expression of follicle-stimulating hormone receptor in human ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1Kqur4%3D&md5=839a6e73390a7aeabea2b78f392d828aCAS | 9229226PubMed |

Monniaux, D., Clément, F., Dalbiès-Tran, R., Estienne, A., Fabre, S., Mansanet, C., and Monget, P. (2014). The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link? Biol. Reprod. 90, 85.
The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: what is the link?Crossref | GoogleScholarGoogle Scholar | 24599291PubMed |

Nakai, R., Weng, Q., Tanaka, Y., Tsunoda, N., Taniyama, H., Haramaki, S., Nambo, Y., Watanabe, G., and Taya, K. (2007). Change in circulating follicle-stimulating hormone, luteinising hormone, immunoreactive inhibin, progesterone, testosterone and oestradiol-17β in fillies from birth to 6 months of age. J. Equine Sci. 18, 85–91.
Change in circulating follicle-stimulating hormone, luteinising hormone, immunoreactive inhibin, progesterone, testosterone and oestradiol-17β in fillies from birth to 6 months of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVyhurnM&md5=ed4b20355fe73bd57311eedb8a7a6fe5CAS |

Oktay, K., Briggs, D., and Gosden, R. G. (1997). Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J. Clin. Endocrinol. Metab. 82, 3748–3751.
Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KjurY%3D&md5=2511fd1cd508b368b22a7b5f15d2c1e5CAS | 9360535PubMed |

Oktay, K., Newton, H., Mullan, J., and Gosden, R. G. (1998). Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle-stimulating hormone. Hum. Reprod. 13, 1133–1138.
Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktF2ht7Y%3D&md5=d7add29c3a81249e9b97e01d85a949d3CAS | 9647533PubMed |

O’Shaughnessy, P. J., Dudley, K., and Rajapaksha, W. (1996). Expression of follicle-stimulating hormone-receptor mRNA during gonadal development. Mol. Cell. Endocrinol. 125, 169–175.
Expression of follicle-stimulating hormone-receptor mRNA during gonadal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVSrsA%3D%3D&md5=4310ba5eecd4b80dec26d6d8a33cbd1bCAS | 9027355PubMed |

Rajapaksha, W. R. A. K. J. S., Robertson, L., and O’Shaughnessy, P. J. (1996). Expression of follicle-stimulating hormone-receptor mRNA alternate transcripts in bovine granulosa cells during luteinisation in vivo and in vitro. Mol. Cell. Endocrinol. 120, 25–30.
Expression of follicle-stimulating hormone-receptor mRNA alternate transcripts in bovine granulosa cells during luteinisation in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktVSgs7g%3D&md5=6e9899ab6e1fd97a93c58ef7225c41ddCAS |

Saint-Dizier, M., Malandain, E., Thoumire, S., Remy, B., and Chastant-Maillard, S. (2007). Expression of follicle-stimulating hormone and luteinising hormone receptors during follicular growth in the domestic cat ovary. Mol. Reprod. Dev. 74, 989–996.
Expression of follicle-stimulating hormone and luteinising hormone receptors during follicular growth in the domestic cat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhurs%3D&md5=f15470be9f1eb6ef3af79cd704f4a185CAS | 17219419PubMed |

Saraiva, M. V. A., Celestino, J. J. H., Araújo, V. R., Chaves, R. N., Almeida, A. P., Lima-Verde, I. B., Duarte, A. B. G., Silva, G. M., Martins, F. S., Bruno, J. B., Matos, M. H. T., Campello, C. C., Silva, J. R. V., and Figueiredo, J. R. (2011). Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles. Zygote 19, 205–214.
Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1amsbo%3D&md5=26e0db2b267e371d92b707656299f124CAS |

Scheetz, D., Folger, J. K., Smith, G. W., and Ireland, J. J. (2012). Granulosa cells are refractory to FSH action in individuals with a low antral follicle count. Reprod. Fertil. Dev. 24, 327–336.
Granulosa cells are refractory to FSH action in individuals with a low antral follicle count.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oitbs%3D&md5=0cd9f65699264b04a2a1926d4776f11bCAS | 22281079PubMed |

Simoni, M. (1997). The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology. Endocr. Rev. 18, 739–773.
The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology and pathophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFeg&md5=dede590d006044321997ec64429160a7CAS | 9408742PubMed |

Sullivan, R. R., Faris, B. R., Eborn, D., Grieger, D. M., Cino-Ozuna, A. G., and Rozell, T. G. (2013). Follicular expression of follicle-stimulating hormone receptor variants in the ewe. Reprod. Biol. Endocrinol. 11, 113.
Follicular expression of follicle-stimulating hormone receptor variants in the ewe.Crossref | GoogleScholarGoogle Scholar | 24330584PubMed |

Tanaka, Y. (2003). Localisation and secretion of inhibins in the equine fetal ovaries. Biol. Reprod. 68, 328–335.
Localisation and secretion of inhibins in the equine fetal ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFaj&md5=feb6bc43f3637dad8106375f126230d7CAS | 12493730PubMed |

Tremoleda, J. L., Tharasanit, T., Van Tol, H. T. A., Stout, T. A. E., Colenbrander, B., and Bevers, M. M. (2003). Effects of follicular cells and FSH on the resumption of meiosis in equine oocytes matured in vitro. Reproduction 125, 565–577.
Effects of follicular cells and FSH on the resumption of meiosis in equine oocytes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqtLs%3D&md5=935277e042385edf2b8b11f5053391edCAS | 12683927PubMed |

Uilenbroek, J. T., and van der Linden, R. (1983). Changes in gonadotrophin binding to rat ovaries during sexual maturation. Acta Endocrinol. (Copenh.) 103, 413–419.
Changes in gonadotrophin binding to rat ovaries during sexual maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvF2ltrs%3D&md5=52538366cff11f40dc9deeb83e6e3a96CAS | 6308938PubMed |

Vogel, C., and Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232.
Insights into the regulation of protein abundance from proteomic and transcriptomic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wgurs%3D&md5=dc213623af4a053525dcb1b428c89f8bCAS | 22411467PubMed |

Willis, P., Caudle, A. B., and Fayrer-Hosken, R. A. (1991). Equine oocyte in vitro maturation: influences of sera, time and hormones. Mol. Reprod. Dev. 30, 360–368.
Equine oocyte in vitro maturation: influences of sera, time and hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhs12ms74%3D&md5=955534cf5d4e57d7be6f5cf1a07664d0CAS | 1751041PubMed |

Yaron, Y., Schwartz, D., Evans, M. I., Lessing, J. B., and Rotter, V. (1998). Alternatively spliced mRNA transcripts encoding the extracellular domain of the FSH receptor gene. Expression in the mouse ovary during the ovulatory cycle. J. Reprod. Med. 43, 435–438.
| 1:CAS:528:DyaK1cXjslOltrk%3D&md5=e0efbb23a5d948e96bec9fd775d66523CAS | 9610467PubMed |

Zhou, J., Huang, Y., Li, L., Zhu, L., Zhang, D., Zhang, S., and Chen, Y. (2013). Identification of two novel, alternatively spliced mRNA transcripts of the human follicle-stimulating hormone receptor. Mol. Reprod. Dev. 80, 916–923.
Identification of two novel, alternatively spliced mRNA transcripts of the human follicle-stimulating hormone receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlyrtLnO&md5=11c4744605bd512bd1d72dc6fbe9e2a4CAS | 24009160PubMed |