Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening

Yuanming Xu A , Francesca E. Duncan A B ; , Min Xu A and Teresa K. Woodruff A B C
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

B Center for Reproductive Science, Northwestern University, Evanston, IL 60208, USA.

C Corresponding author. Email: tkw@northwestern.edu

Reproduction, Fertility and Development 28(9) 1295-1306 https://doi.org/10.1071/RD14375
Submitted: 4 October 2014  Accepted: 9 January 2015   Published: 18 February 2015

Abstract

Screening of pharmaceutical, chemical and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess these effects are needed. Herein we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with: (1) known fertotoxicity (i.e. toxicity to the reproductive system; cyclophosphamide and cisplatin); (2) no known fertotoxicity (nalbuphine); and (3) unknown fertotoxicity (Corexit EC 9500 A; CE, Nalco, Chicago, IL, USA). For each compound, we assayed follicle growth, hormone production and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. Cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. In the present study, CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool to assess the effects of chemical compounds on reproductive function and health.

Additional keywords: culture, oocyte, ovary.


References

Ahn, R. W., Barrett, S. L., Raja, M. R., Jozefik, J. K., Spaho, L., Chen, H., and Woodruff, T. K. (2013). Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo. PLoS ONE 8, e58491.
Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFyqtLw%3D&md5=19a0656d73742f01346915903390e1bcCAS | 23526987PubMed |

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=deb9f901bb90e46c53ca80b16045c08aCAS | 11427152PubMed |

Allen, D. D., Caviedes, R., Cardenas, A. M., Shimahara, T., Segura-Aguilar, J., and Caviedes, P. A. (2005). Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev. Ind. Pharm. 31, 757–768.
Cell lines as in vitro models for drug screening and toxicity studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2gtLfL&md5=d8a96f2bdcdae3977d59d3ecd8f49dfeCAS | 16221610PubMed |

Andersen, M. E., Al-Zoughool, M., Croteau, M., Westphal, M., and Krewski, D. (2010). The future of toxicity testing. J. Toxicol. Environ. Health B Crit. Rev. 13, 163–196.
The future of toxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGksbg%3D&md5=5738fa03f97597d7e9a530be20ae5930CAS | 20574896PubMed |

Bhattacharya, P., Madden, J. A., Sen, N., Hoyer, P. B., and Keating, A. F. (2013). Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries. Toxicol. Appl. Pharmacol. 267, 49–56.
Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCms7k%3D&md5=54142cca8a0a8b47717ba2ae3b340145CAS | 23274565PubMed |

Borovskaya, T. G., Goldberg, V. E., Fomina, T. I., Pakhomova, A. V., Kseneva, S. I., Poluektova, M. E., and Goldberg, E. D. (2004). Morphological and functional state of rat ovaries in early and late periods after administration of platinum cytostatics. Bull. Exp. Biol. Med. 137, 331–335.
Morphological and functional state of rat ovaries in early and late periods after administration of platinum cytostatics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsl2qtbc%3D&md5=b6da2ebb4cf0eb880ed2b552a7440158CAS | 15452593PubMed |

Butcher, R. L., Collins, W. E., and Fugo, N. W. (1974). Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94, 1704–1708.
Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltlektbY%3D&md5=d879a2fb98103d7b0d4ff4e700129717CAS | 4857496PubMed |

Cole, R. D., Anderson, G. L., and Williams, P. L. (2004). The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol. 194, 248–256.
The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVamuw%3D%3D&md5=05d4b82e25a9c9ff6553df840b844c77CAS | 14761681PubMed |

Cortvrindt, R. G., and Smitz, J. E. (2002). Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function? Hum. Reprod. Update 8, 243–254.
Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zjs1ygsA%3D%3D&md5=b894f3d1b28fc192264c6fcb4d3b49c4CAS | 12078835PubMed |

Dash, A., Blackman, B. R., and Wamhoff, B. R. (2012). Organotypic systems in drug metabolism and toxicity: challenges and opportunities. Expert Opin. Drug Metab. Toxicol. 8, 999–1014.
Organotypic systems in drug metabolism and toxicity: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOjtbrF&md5=0b243009af9e99d53bf15c95ed2dc805CAS | 22632603PubMed |

Dutta, S., Mark-Kappeler, C. J., Hoyer, P. B., and Pepling, M. E. (2014). The steroid hormone environment during primordial follicle formation in perinatal mouse ovaries. Biol. Reprod. 91, 68.
The steroid hormone environment during primordial follicle formation in perinatal mouse ovaries.Crossref | GoogleScholarGoogle Scholar | 25078683PubMed |

Eppig, J. J., Pendola, F. L., Wigglesworth, K., and Pendola, J. K. (2005). Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol. Reprod. 73, 351–357.
Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLk%3D&md5=6e1812bd278e5f7b1c746ee7bdc2e9b2CAS | 15843493PubMed |

European Medicines Agency (EMA) (1994). ‘Detection of Toxicity to Reproduction for Medicinal Products & Toxicity to Male Fertility.’ Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002809.pdf [verified April 2014].

Food and Drug Administration (FDA) (2009). ‘Approved Drug Products with Therapeutic Equivalence Evaluations.’ Available at: http://www.accessdata.fda.gov/scripts/cder/ob/ [verified April 2013].

Food and Drug Administration (FDA) (2013). ‘Drug@FDA.’ Available at: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Overview&DrugName=NALBUPHINE%20HYDROCHLORIDE [verified July 2014].

Goodbody-Gringley, G., Wetzel, D. L., Gillon, D., Pulster, E., Miller, A., and Ritchie, K. B. (2013). Toxicity of Deepwater Horizon source oil and the chemical dispersant, Corexit(R) 9500, to coral larvae. PLoS ONE 8, e45574.
Toxicity of Deepwater Horizon source oil and the chemical dispersant, Corexit(R) 9500, to coral larvae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Smu7g%3D&md5=e2ef3f2b29edec3b0747e2880b35bcc4CAS | 23326298PubMed |

Hartmann, J. T., and Lipp, H. P. (2003). Toxicity of platinum compounds. Expert Opin. Pharmacother. 4, 889–901.
Toxicity of platinum compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1emu70%3D&md5=9c68b177ff177618b74a71197870a01bCAS | 12783586PubMed |

Hemmer, M. J., Barron, M. G., and Greene, R. M. (2011). Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ. Toxicol. Chem. 30, 2244–2252.
Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hs7bF&md5=bffe4763a702eabc162dad3af53fd2d9CAS | 21766318PubMed |

Hook, S. E., and Osborn, H. L. (2012). Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil. Aquat. Toxicol. 124–125, 139–151.
Comparison of toxicity and transcriptomic profiles in a diatom exposed to oil, dispersants, dispersed oil.Crossref | GoogleScholarGoogle Scholar | 22954801PubMed |

Hornick, J. E., Duncan, F. E., Shea, L. D., and Woodruff, T. K. (2012). Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum. Reprod. 27, 1801–1810.
Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOls7k%3D&md5=eef0305adaa12f1ebeaee4015744b3d3CAS | 22456922PubMed |

Hornick, J. E., Duncan, F. E., Shea, L. D., and Woodruff, T. K. (2013). Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction 145, 19–32.
Multiple follicle culture supports primary follicle growth through paracrine-acting signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGisb4%3D&md5=8f0c41f447190bb99cf0ed2e3558f3ffCAS | 23108112PubMed |

Igawa, Y., Keating, A. F., Rajapaksa, K. S., Sipes, I. G., and Hoyer, P. B. (2009). Evaluation of ovotoxicity induced by 7,12-dimethylbenz[a]anthracene and its 3,4-diol metabolite utilizing a rat in vitro ovarian culture system. Toxicol. Appl. Pharmacol. 234, 361–369.
Evaluation of ovotoxicity induced by 7,12-dimethylbenz[a]anthracene and its 3,4-diol metabolite utilizing a rat in vitro ovarian culture system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCltrc%3D&md5=b6f1ce8e627aecdba9c873f09dedc3deCAS | 19027032PubMed |

Keating, A. F., Rajapaksa, K. S., Sipes, I. G., and Hoyer, P. B. (2008a). Effect of CYP2E1 gene deletion in mice on expression of microsomal epoxide hydrolase in response to VCD exposure. Toxicol. Sci. 105, 351–359.
Effect of CYP2E1 gene deletion in mice on expression of microsomal epoxide hydrolase in response to VCD exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWitL7J&md5=2f3720ef8946766804bdafbdc85d4babCAS | 18622027PubMed |

Keating, A. F., Sipes, I. G., and Hoyer, P. B. (2008b). Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F(1) mice. Toxicol. Appl. Pharmacol. 230, 109–116.
Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F(1) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Oiurs%3D&md5=108b43af5f3378c9c7e5a05ec59ebad1CAS | 18407309PubMed |

Kerr, J. B., Brogan, L., Myers, M., Hutt, K. J., Mladenovska, T., Ricardo, S., Hamza, K., Scott, C. L., Strasser, A., and Findlay, J. K. (2012). The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion. Reproduction 143, 469–476.
The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2nsLw%3D&md5=c3f01c00c19018747d8e6dce84099035CAS | 22301887PubMed |

Kociba, R. J., and Sleight, S. D. (1971). Acute toxicologic and pathologic effects of cis-diamminedichloroplatinum (NSC-119875) in the male rat. Cancer Chemother. Rep. 55, 1–8.
| 1:CAS:528:DyaE3MXktVersLs%3D&md5=b42949662465f7b8f6fef77d441396f7CAS | 5121647PubMed |

Kreeger, P. K., Fernandes, N. N., Woodruff, T. K., and Shea, L. D. (2005). Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol. Reprod. 73, 942–950.
Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGktb%2FM&md5=81e925998ca9077f2c0baa57650aead0CAS | 15987824PubMed |

Laronda, M. M., Duncan, F. E., Hornick, J. E., Xu, M., Pahnke, J. E., Whelan, K. A., and Woodruff, T. K. (2014). Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J. Assist. Reprod. Genet. 31, 1013–1028.
Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue.Crossref | GoogleScholarGoogle Scholar | 24845158PubMed |

Lenie, S., and Smitz, J. (2009). Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles. Toxicol. Lett. 185, 143–152.
Steroidogenesis-disrupting compounds can be effectively studied for major fertility-related endpoints using in vitro cultured mouse follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1KktL8%3D&md5=c3bd3a31d1de877271059eef98adc9d4CAS | 19152831PubMed |

Lenie, S., Cortvrindt, R., Eichenlaub-Ritter, U., and Smitz, J. (2008). Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat. Res. 651, 71–81.
Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmt7o%3D&md5=2ae1d159170c3687c92e45d83f118778CAS | 18093867PubMed |

Meirow, D., and Nugent, D. (2001). The effects of radiotherapy and chemotherapy on female reproduction. Hum. Reprod. Update 7, 535–543.
The effects of radiotherapy and chemotherapy on female reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnotFKisQ%3D%3D&md5=d8ec38e597ef9284795fb343f093e48bCAS | 11727861PubMed |

Meirow, D., Lewis, H., Nugent, D., and Epstein, M. (1999). Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool. Hum. Reprod. 14, 1903–1907.
Subclinical depletion of primordial follicular reserve in mice treated with cyclophosphamide: clinical importance and proposed accurate investigative tool.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzjtVKqug%3D%3D&md5=480b92c9e28ce80759354cd30b2f4d9aCAS | 10402415PubMed |

National Research Council (NRC) (2007). ‘Toxicity Testing in the 21st Century: A Vision and a Strategy.’ (National Academies Press: Washington, DC.)

Pedersen, T., and Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557.
Proposal for a classification of oocytes and follicles in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7jsFSgtw%3D%3D&md5=fc6c5a8cea7344ad0e15eeb31248c2cfCAS | 5715685PubMed |

Peretz, J., and Flaws, J. A. (2013). Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 271, 249–256.
Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1aqt77N&md5=30db81cf3750818beb2996eeeb6f11b6CAS | 23707772PubMed |

Peretz, J., Gupta, R. K., Singh, J., Hernandez-Ochoa, I., and Flaws, J. A. (2011). Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci. 119, 209–217.
Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rsbnF&md5=f63d83674c9e8bfd283ef5bcc9c3509bCAS | 20956811PubMed |

Peretz, J., Craig, Z. R., and Flaws, J. A. (2012). Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biol. Reprod. 87, 63.
Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway.Crossref | GoogleScholarGoogle Scholar | 22743301PubMed |

Peretz, J., Neese, S. L., and Flaws, J. A. (2013). Mouse strain does not influence the overall effects of bisphenol A-induced toxicity in adult antral follicles. Biol. Reprod. 89, 108.
Mouse strain does not influence the overall effects of bisphenol A-induced toxicity in adult antral follicles.Crossref | GoogleScholarGoogle Scholar | 24025742PubMed |

Picton, H. M., Harris, S. E., Muruvi, W., and Chambers, E. L. (2008). The in vitro growth and maturation of follicles. Reproduction 136, 703–715.
The in vitro growth and maturation of follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CktA%3D%3D&md5=3169c95f5e75bc1097a0ba5494e96129CAS | 19074213PubMed |

Roh, J. Y., Park, Y. K., Park, K., and Choi, J. (2010). Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Pharmacol. 29, 167–172.
Ecotoxicological investigation of CeO(2) and TiO(2) nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVKltrY%3D&md5=70f66c202d179ef6fc064f6d3089b05fCAS | 21787599PubMed |

Sochová, I., Hofman, J., and Holoubek, I. (2007). Effects of seven organic pollutants on soil nematode Caenorhabditis elegans. Environ. Int. 33, 798–804.
Effects of seven organic pollutants on soil nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 17449100PubMed |

Spielmann, H. (1998). Reproduction and development. Environ. Health Perspect. 106, 571–576.
Reproduction and development.Crossref | GoogleScholarGoogle Scholar | 9599704PubMed |

Sun, F., Betzendahl, I., Van Wemmel, K., Cortvrindt, R., Smitz, J., Pacchierotti, F., and Eichenlaub-Ritter, U. (2008). Trichlorfon-induced polyploidy and nondisjunction in mouse oocytes from preantral follicle culture. Mutat. Res. 651, 114–124.
Trichlorfon-induced polyploidy and nondisjunction in mouse oocytes from preantral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmtro%3D&md5=90f8413030f95cfb77eff54f1ea5ee29CAS | 18065258PubMed |

Sutton, P., Giudice, L. C., and Woodruff, T. J. (2010). Reproductive environmental health. Curr. Opin. Obstet. Gynecol. 22, 517–524.
Reproductive environmental health.Crossref | GoogleScholarGoogle Scholar | 20978443PubMed |

Tagler, D., Tu, T., Smith, R. M., Anderson, N. R., Tingen, C. M., Woodruff, T. K., and Shea, L. D. (2012). Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels. Tissue Eng. Part A 18, 1229–1238.
Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVOisLg%3D&md5=c9a9e19890220dc7140bf84c56accc4eCAS | 22296562PubMed |

Tingen, C. M., Kiesewetter, S. E., Jozefik, J., Thomas, C., Tagler, D., Shea, L., and Woodruff, T. K. (2011). A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro. Reproduction 141, 809–820.
A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCktLY%3D&md5=48228dc21537c814d2ec2f5acca95e91CAS | 21389078PubMed |

U.S. Environmental Protection Agency (EPA) (1996). ‘Guidelines for reproductive toxicity risk assessment (FRL-5360-6).’ Available at: http://www.epa.gov/raf/publications/guidelines-reproductive-tox-risk-assessment.htm [verified March 2013].

Van Wemmel, K., Gobbers, E., Eichenlaub-Ritter, U., Smitz, J., and Cortvrindt, R. (2005). Ovarian follicle bioassay reveals adverse effects of diazepam exposure upon follicle development and oocyte quality. Reprod. Toxicol. 20, 183–193.
Ovarian follicle bioassay reveals adverse effects of diazepam exposure upon follicle development and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Oisbs%3D&md5=820291f305ca2944f52e0fa6bc138272CAS | 15907652PubMed |

Wallace, W. H., Shalet, S. M., Crowne, E. C., Morris-Jones, P. H., Gattamaneni, H. R., and Price, D. A. (1989). Gonadal dysfunction due to cis-platinum. Med. Pediatr. Oncol. 17, 409–413.
| 1:STN:280:DyaK3c%2FhsVGisw%3D%3D&md5=cd79a2ad839e763b3da4242ed2a49d4cCAS | 2507885PubMed |

Wang, D., and Xing, X. (2008). Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J. Environ. Sci. (China) 20, 1132–1137.
Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2rt7rP&md5=8640d759308bed8ddc4afe66289b1d66CAS | 19143322PubMed |

West-Farrell, E. R., Xu, M., Gomberg, M. A., Chow, Y. H., Woodruff, T. K., and Shea, L. D. (2009). The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles. Biol. Reprod. 80, 432–439.
The mouse follicle microenvironment regulates antrum formation and steroid production: alterations in gene expression profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtL4%3D&md5=8d5630d1d38592fae0b996e1f1bddac9CAS | 19005169PubMed |

Woodruff, T. J., Carlson, A., Schwartz, J. M., and Giudice, L. C. (2008). Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary. Fertil. Steril. 89, e1–e20.
Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary.Crossref | GoogleScholarGoogle Scholar | 18308046PubMed |

Xu, M., Kreeger, P. K., Shea, L. D., and Woodruff, T. K. (2006a). Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 12, 2739–2746.
Tissue-engineered follicles produce live, fertile offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSht7fF&md5=9cd68bde5ac7c7a3618a577c10b34d04CAS | 17518643PubMed |

Xu, M., West, E., Shea, L. D., and Woodruff, T. K. (2006b). Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol. Reprod. 75, 916–923.
Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjtr7O&md5=afdffbe2f1d612e20af070dd437f1011CAS | 16957022PubMed |

Xu, M., West-Farrell, E. R., Stouffer, R. L., Shea, L. D., Woodruff, T. K., and Zelinski, M. B. (2009a). Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 81, 587–594.
Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7zL&md5=4ec29cddf24c70ab65caddde15eb5a43CAS | 19474063PubMed |

Xu, M., Banc, A., Woodruff, T. K., and Shea, L. D. (2009b). Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnol. Bioeng. 103, 378–386.
Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVClurs%3D&md5=7327608b68d74f425ef0c3e651e10c8dCAS | 19191350PubMed |

Xu, M., Fazleabas, A. T., Shikanov, A., Jackson, E., Barrett, S. L., Hirshfeld-Cytron, J., and Woodruff, T. K. (2011). In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes. Biol. Reprod. 84, 689–697.
In vitro oocyte maturation and preantral follicle culture from the luteal-phase baboon ovary produce mature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFanurs%3D&md5=0d8ee99e5807badfa0e1ee48cb9fc65cCAS | 21123815PubMed |

Yanulevich, J. (1983). Outpatient anesthesia with nalbuphine hydrochloride. AANA J. 51, 395–397.
| 1:STN:280:DyaL2c%2FkvVWrtw%3D%3D&md5=a83ea2ed74fd098bb6b447d8b213b438CAS | 6556875PubMed |

Yeh, J., Kim, B., Liang, Y. J., and Peresie, J. (2006). Mullerian inhibiting substance as a novel biomarker of cisplatin-induced ovarian damage. Biochem. Biophys. Res. Commun. 348, 337–344.
Mullerian inhibiting substance as a novel biomarker of cisplatin-induced ovarian damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1ajtLc%3D&md5=1d0fa94d37590b46fb24519ada7f85f6CAS | 16875679PubMed |

Yucebilgin, M. S., Terek, M. C., Ozsaran, A., Akercan, F., Zekioglu, O., Isik, E., and Erhan, Y. (2004). Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust. N. Z. J. Obstet. Gynaecol. 44, 6–9.
Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility.Crossref | GoogleScholarGoogle Scholar | 15089860PubMed |

Zhang, Y., Chen, D., Ennis, A. C., Polli, J. R., Xiao, P., Zhang, B., Stellwag, E. J., Overton, A., and Pan, X. (2013). Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans. Arch. Toxicol. 87, 371–382.
Chemical dispersant potentiates crude oil impacts on growth, reproduction, and gene expression in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGqu7zK&md5=98b3160830678f7361f2ebe019f1127cCAS | 22990136PubMed |

Zheng, M., Ahuja, M., Bhattacharya, D., Clement, T. P., Hayworth, J. S., and Dhanasekaran, M. (2014). Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci. 95, 108–117.
Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktFOrtA%3D%3D&md5=f9d1c43fca4588a2f1a83de91b1ff758CAS | 24361361PubMed |

Zurlo, J. (2012). No animals harmed: toward a paradigm shift in toxicity testing. Hastings Cent. Rep. Suppl, S23–S26.
No animals harmed: toward a paradigm shift in toxicity testing.Crossref | GoogleScholarGoogle Scholar | 23138426PubMed |