Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dexamethasone treatment of pregnant F0 mice leads to parent of origin-specific changes in placental function of the F2 generation

O. R. Vaughan A B , H. M. Phillips A , A. J. Everden A , A. N. Sferruzzi-Perri A and A. L. Fowden A
+ Author Affiliations
- Author Affiliations

A Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.

B Corresponding author. Email: orv20@cam.ac.uk

Reproduction, Fertility and Development 27(4) 704-711 https://doi.org/10.1071/RD14285
Submitted: 5 August 2014  Accepted: 8 January 2015   Published: 13 February 2015

Abstract

Dexamethasone treatment of F0 pregnant rodents alters F1 placental function and adult cardiometabolic phenotype. The adult phenotype is transmitted to the F2 generation without further intervention, but whether F2 placental function is altered by F0 dexamethasone treatment remains unknown. In the present study, F0 mice were untreated or received dexamethasone (0.2 µg g–1 day–1, s.c.) over Days 11–15 or 14–18 of pregnancy (term Day 21). Depending on the period of F0 dexamethasone treatment, F1 offspring were lighter at birth or grew more slowly until weaning (P < 0.05). Glucose tolerance (1 g kg–1, i.p.) of adult F1 males was abnormal. Mating F1 males exposed prenatally to dexamethasone with untreated females had no effect on F2 placental function on Day 19 of pregnancy. In contrast, when F1 females were mated with untreated males, F2 placental clearance of the amino acid analogue 14C-methylaminoisobutyric acid was increased by 75% on Day 19 specifically in dams prenatally exposed to dexamethasone on Days 14–18 (P < 0.05). Maternal plasma corticosterone was also increased, but F2 placental Slc38a4 expression was decreased in these dams (P < 0.05). F0 dexamethasone treatment had no effect on F2 fetal or placental weights, regardless of lineage. Therefore, the effects of F0 dexamethasone exposure are transmitted intergenerationally to the F2 placenta via the maternal, but not paternal, line.


References

Ain, R. (2005). Dexamethasone-induced intrauterine growth restriction impacts the placental prolactin family, insulin-like growth factor-II and the Akt signaling pathway. J. Endocrinol. 185, 253–263.
Dexamethasone-induced intrauterine growth restriction impacts the placental prolactin family, insulin-like growth factor-II and the Akt signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlylt7k%3D&md5=5c2791413e047d19d4e7942cf33b75b5CAS | 15845918PubMed |

Audette, M. C., Challis, J. R., Jones, R. L., Sibley, C. P., and Matthews, S. G. (2011). Antenatal dexamethasone treatment in midgestation reduces system A-mediated transport in the late-gestation murine placenta. Endocrinology 152, 3561–3570.
Antenatal dexamethasone treatment in midgestation reduces system A-mediated transport in the late-gestation murine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOht7fP&md5=0ed5b6887d02b199dcef6763e54c3ec2CAS | 21733830PubMed |

Baisden, B., Sonne, S., Joshi, R., Ganapathy, V., and Shekhawat, P. (2007). Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta 28, 1082–1090.
Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWmsLnO&md5=2c6437c58323edb266f0f114dee1449bCAS | 17559929PubMed |

Barker, D. J. (1994). ‘Mothers, Babies and Disease in Later Life.’ (BMJ Publishing Group: London.)

Barlow, S. M., Morrison, P. J., and Sullivan, F. M. (1974). Plasma corticosterone levels during pregnancy in the mouse: the relative contributions of the adrenal glands and foeto-placental units. J. Endocrinol. 60, 473–483.
Plasma corticosterone levels during pregnancy in the mouse: the relative contributions of the adrenal glands and foeto-placental units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXktlGqtL8%3D&md5=b4a9839b46849a8cd569029eefe960f5CAS | 4823252PubMed |

Benediktsson, R., Lindsay, R. S., Noble, J., Seckl, J. R., and Edwards, C. R. (1993). Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341, 339–341.
Glucocorticoid exposure in utero: new model for adult hypertension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVWitL4%3D&md5=c8cab67f14aa75063354b7477fd9abd5CAS | 8094115PubMed |

Brownfoot, F. C., Crowther, C. A., and Middleton, P. (2008). Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 4, CD006764.
| 18843729PubMed |

Coan, P. M., Ferguson-Smith, A. C., and Burton, G. J. (2004). Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 70, 1806–1813.
Developmental dynamics of the definitive mouse placenta assessed by stereology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOmtLw%3D&md5=3bafc4cbb3562f7a1263f11e0ea621c0CAS | 14973263PubMed |

Constância, M., Angiolini, E., Sandovici, I., Smith, P., Smith, R., Kelsey, G., Dean, W., Ferguson-Smith, A., Sibley, C. P., Reik, W., and Fowden, A. (2005). Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl Acad. Sci. USA 102, 19 219–19 224.
Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems.Crossref | GoogleScholarGoogle Scholar |

Cottrell, E. C., Holmes, M. C., Livingstone, D. E., Kenyon, C. J., and Seckl, J. R. (2012). Reconciling the nutritional and glucocorticoid hypotheses of fetal programming. FASEB J. 26, 1866–1874.
Reconciling the nutritional and glucocorticoid hypotheses of fetal programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFSitb8%3D&md5=9c389c6e940b417fa81e85168961ab88CAS | 22321728PubMed |

Cramer, S., Beveridge, M., Kilberg, M., and Novak, D. (2002). Physiological importance of system A-mediated amino acid transport to rat fetal development. Am. J. Physiol. Cell Physiol. 282, C153–C160.
| 1:CAS:528:DC%2BD38XlsVKnuw%3D%3D&md5=f8a7a3b263bdffe78e1305a7e2fde3afCAS | 11742808PubMed |

Crudo, A., Petropoulos, S., Moisiadis, V. G., Iqbal, M., Kostaki, A., Machnes, Z., Szyf, M., and Matthews, S. G. (2012). Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153, 3269–3283.
Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWgu78%3D&md5=ce15bc414236d8464ed37c9c2bbf2d33CAS | 22564977PubMed |

Cuffe, J. S., Dickinson, H., Simmons, D. G., and Moritz, K. M. (2011). Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 32, 981–989.
Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGjt7bM&md5=4c63e1bd540ab1706a0156c5a1e3189aCAS | 21974799PubMed |

de Vries, A., Holmes, M. C., Heijnis, A., Seier, J. V., Heerden, J., Louw, J., Wolfe-Coote, S., Meaney, M. J., Levitt, N. S., and Seckl, J. R. (2007). Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function. J. Clin. Invest. 117, 1058–1067.
Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVOit7w%3D&md5=ef00dfc3cede704d78ac39b65f6f6ae6CAS | 17380204PubMed |

Dodic, M., May, C. N., Wintour, E. M., and Coghlan, J. P. (1998). An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin. Sci. (Lond.) 94, 149–155.
| 1:CAS:528:DyaK1cXht1yms7o%3D&md5=7755d76b847282db4040c6a323384a94CAS | 9536923PubMed |

Drake, A. J., Walker, B. R., and Seckl, J. R. (2005). Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R34–R38.
Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCqtbY%3D&md5=c572abc876e7495b6fa7ecdfdad28884CAS | 15178540PubMed |

Drake, A. J., Liu, L., Kerrigan, D., Meehan, R. R., and Seckl, J. R. (2011). Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects. Epigenetics 6, 1334–1343.
Multigenerational programming in the glucocorticoid programmed rat is associated with generation-specific and parent of origin effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlGrtbw%3D&md5=a7b3a0910bf76bdf8818d9b285525709CAS | 22086116PubMed |

Drozdowski, L. A., Iordache, C., Clandinin, M. T., Todd, Z., Gonnet, M., Wild, G., Uwiera, R. R., and Thomson, A. B. (2009). Maternal dexamethasone and GLP-2 have early effects on intestinal sugar transport in their suckling rat offspring. J. Nutr. Biochem. 20, 771–782.
Maternal dexamethasone and GLP-2 have early effects on intestinal sugar transport in their suckling rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFanu7%2FP&md5=0404e41015f4e75ce4c0edc67c476522CAS | 18993047PubMed |

Drude, S., Geissler, A., Olfe, J., Starke, A., Domanska, G., Schuett, C., and Kiank-Nussbaum, C. (2011). Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice. Lab. Anim. (NY) 40, 119–128.
Side effects of control treatment can conceal experimental data when studying stress responses to injection and psychological stress in mice.Crossref | GoogleScholarGoogle Scholar | 21427691PubMed |

Fowden, A. L., and Moore, T. (2012). Maternal–fetal resource allocation: co-operation and conflict. Placenta 33, e11–e15.
Maternal–fetal resource allocation: co-operation and conflict.Crossref | GoogleScholarGoogle Scholar | 22652046PubMed |

Franko, K. L., Forhead, A. J., and Fowden, A. L. (2010). Differential effects of prenatal stress and glucocorticoid administration on postnatal growth and glucose metabolism in rats. J. Endocrinol. 204, 319–329.
Differential effects of prenatal stress and glucocorticoid administration on postnatal growth and glucose metabolism in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFajsb0%3D&md5=82d6293889fa988e2968f91368f921d0CAS | 20016055PubMed |

Hahn, T., Barth, S., Graf, R., Engelmann, M., Beslagic, D., Reul, J. M., Holsboer, F., Dohr, G., and Desoye, G. (1999). Placental glucose transporter expression is regulated by glucocorticoids. J. Clin. Endocrinol. Metab. 84, 1445–1452.
| 1:CAS:528:DyaK1MXisVyrtbw%3D&md5=0620d2317735bae8d5d67634b60903bbCAS | 10199793PubMed |

Hauser, J., Feldon, J., and Pryce, C. R. (2009). Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm. Behav. 56, 364–375.
Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GmurnI&md5=bb255b2e9dc19720db21ed6af85d2589CAS | 19616002PubMed |

Hewitt, D. P., Mark, P. J., and Waddell, B. J. (2006). Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology 147, 5568–5574.
Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtr7M&md5=08fd226120313361cf9774c7d27eeec3CAS | 16959835PubMed |

Igosheva, N., Abramov, A. Y., Poston, L., Eckert, J. J., Fleming, T. P., Duchen, M. R., and McConnell, J. (2010). Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE 5, e10074.
Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes.Crossref | GoogleScholarGoogle Scholar | 20404917PubMed |

Iqbal, M., Moisiadis, V. G., Kostaki, A., and Matthews, S. G. (2012). Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic–pituitary–adrenal function. Endocrinology 153, 3295–3307.
Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic–pituitary–adrenal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFWgu70%3D&md5=c6fcc2d9308edc489772ba5c879773a2CAS | 22564976PubMed |

Isganaitis, E., Radford, E. J., Lytras, A., Chen, M., Schroeder, J., Sharma, A., Ferguson-Smith, A. C., and Patti, M.-E. (2011). Paternal history of exposure to prenatal undernutrition alters placental expression of nutrient transporters and mTor targets in F2 offspring: potential contribution to intergenerational transmission of diabetes and obesity risk. J. Dev. Origins Health Dis. 2, S4.

Khan, A. A., Rodriguez, A., Kaakinen, M., Pouta, A., Hartikainen, A. L., and Jarvelin, M. R. (2011). Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans. Paediatr. Perinat. Epidemiol. 25, 20–36.
Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans.Crossref | GoogleScholarGoogle Scholar | 21133966PubMed |

Lager, S., Samulesson, A. M., Taylor, P. D., Poston, L., Powell, T. L., and Jansson, T. (2014). Diet-induced obesity in mice reduces placental efficiency and inhibits placental mTOR signaling. Physiol. Rep. 2, e00242.
Diet-induced obesity in mice reduces placental efficiency and inhibits placental mTOR signaling.Crossref | GoogleScholarGoogle Scholar | 24744907PubMed |

Lindsay, R. S., Lindsay, R. M., Edwards, C. R., and Seckl, J. R. (1996a). Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27, 1200–1204.
Inhibition of 11-beta-hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVyqs7c%3D&md5=4f0a9d556ebc904b06caa6c1b3bb93dcCAS | 8641724PubMed |

Lindsay, R. S., Lindsay, R. M., Waddell, B. J., and Seckl, J. R. (1996b). Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia 39, 1299–1305.
Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFCjsbc%3D&md5=ee0df7ca656b69743107e1c459c34807CAS | 8932995PubMed |

Liu, L., Li, A., and Matthews, S. G. (2001). Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am. J. Physiol. Endocrinol. Metab. 280, E729–E739.
| 1:CAS:528:DC%2BD3MXjsVahs70%3D&md5=7b02b471072b02639e3ef66c5067ee0aCAS | 11287355PubMed |

Long, N. M., Shasa, D. R., Ford, S. P., and Nathanielsz, P. W. (2012). Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids. Am. J. Obstet. Gynecol. 207, 203e1–203e8.
Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids.Crossref | GoogleScholarGoogle Scholar |

Long, N. M., Ford, S. P., and Nathanielsz, P. W. (2013a). Multigenerational effects of fetal dexamethasone exposure on the hypothalamic–pituitary–adrenal axis of first- and second-generation female offspring. Am. J. Obstet. Gynecol. 208, 217e1–217e8.
Multigenerational effects of fetal dexamethasone exposure on the hypothalamic–pituitary–adrenal axis of first- and second-generation female offspring.Crossref | GoogleScholarGoogle Scholar |

Long, N. M., Smith, D. T., Ford, S. P., and Nathanielsz, P. W. (2013b). Elevated glucocorticoids during ovine pregnancy increase appetite and produce glucose dysregulation and adiposity in their granddaughters in response to ad libitum feeding at 1 year of age. Am. J. Obstet. Gynecol. 209, 353e1–353e9.
Elevated glucocorticoids during ovine pregnancy increase appetite and produce glucose dysregulation and adiposity in their granddaughters in response to ad libitum feeding at 1 year of age.Crossref | GoogleScholarGoogle Scholar |

Meijer, M. K., Spruijt, B. M., van Zutphen, L. F., and Baumans, V. (2006). Effect of restraint and injection methods on heart rate and body temperature in mice. Lab. Anim. 40, 382–391.
Effect of restraint and injection methods on heart rate and body temperature in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyrsbvJ&md5=25c57b8d9d81b841898e1024228d8877CAS | 17018209PubMed |

Moisiadis, V. G., and Matthews, S. G. (2014). Glucocorticoids and fetal programming part 1: outcomes. Nat. Rev. Endocrinol. 10, 391–402.
Glucocorticoids and fetal programming part 1: outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFerur8%3D&md5=9c3b8f54e0045d01e5528e1dafd20abdCAS | 24863382PubMed |

Montano, M. M., Wang, M. H., and vom Saal, F. S. (1993). Sex differences in plasma corticosterone in mouse fetuses are mediated by differential placental transport from the mother and eliminated by maternal adrenalectomy or stress. J. Reprod. Fertil. 99, 283–290.
Sex differences in plasma corticosterone in mouse fetuses are mediated by differential placental transport from the mother and eliminated by maternal adrenalectomy or stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVeht7c%3D&md5=b0b20956be2223a13e36774001d62474CAS | 8107008PubMed |

Morrison, J. L., Duffield, J. A., Muhlhausler, B. S., Gentili, S., and McMillen, I. C. (2010). Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr. Nephrol. 25, 669–677.
Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity.Crossref | GoogleScholarGoogle Scholar | 20033220PubMed |

Nyirenda, M. J., Lindsay, R. S., Kenyon, C. J., Burchell, A., and Seckl, J. R. (1998). Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J. Clin. Invest. 101, 2174–2181.
Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1CgtL0%3D&md5=0567561c1edd1de53cbfde0619e01844CAS | 9593773PubMed |

O’Connell, B. A., Moritz, K. M., Roberts, C. T., Walker, D. W., and Dickinson, H. (2011). The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol. Reprod. 85, 1040–1047.
The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2is7fI&md5=87eb2126351e47bbf5f60e0707bb18baCAS | 21795670PubMed |

O’Connell, B. A., Moritz, K. M., Walker, D. W., and Dickinson, H. (2013). Synthetic glucocorticoid dexamethasone inhibits branching morphogenesis in the spiny mouse placenta. Biol. Reprod. 88, 26.
Synthetic glucocorticoid dexamethasone inhibits branching morphogenesis in the spiny mouse placenta.Crossref | GoogleScholarGoogle Scholar | 23242523PubMed |

O’Sullivan, L., Cuffe, J. S., Paravicini, T. M., Campbell, S., Dickinson, H., Singh, R. R., Gezmish, O., Black, M. J., and Moritz, K. M. (2013). Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring. PLoS ONE 8, e69149.
Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CmsbbM&md5=197bc8f470ef12c541b4a12b128cb19cCAS | 23935943PubMed |

Radford, E. J., and Ferguson-Smith, A. C. (2011). Genomic imprinting: epigenetic control and potential roles in the developmental origins of postnatal health and disease. In ‘The Placenta and Human Developmental Programming’. (Eds G. Burton, D. J. Barker, A. Moffett and K. Thornburg.) pp. 74–91. (Cambridge University Press: Cambridge.)

Radford, E. J., Isganaitis, E., Jimenez-Chillaron, J., Schroeder, J., Molla, M., Andrews, S., Didier, N., Charalambous, M., McEwen, K., Marazzi, G., Sassoon, D., Patti, M. E., and Ferguson-Smith, A. C. (2012). An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet. 8, e1002605.
An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFGiurs%3D&md5=55a7d922a05dddf4ca173f86b1b44a4cCAS | 22511876PubMed |

Radford, E. J., Ito, M., Shi, H., Corish, J. A., Yamazawa, K., Isganaitis, E., Seisenberger, S., Hore, T. A., Reik, W., Erkek, S., Peters, A. H., Patti, M. E., and Ferguson-Smith, A. C. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903.
In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism.Crossref | GoogleScholarGoogle Scholar | 25011554PubMed |

Ross, M. G., and Desai, M. (2014). Developmental programming of appetite/satiety. Ann. Nutr. Metab. , 36–44.
Developmental programming of appetite/satiety.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WqtrfO&md5=a70198e03248cb16e81bc59d2fa4594aCAS | 25059804PubMed |

Shoener, J. A., Baig, R., and Page, K. C. (2006). Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic–pituitary–adrenal axis activity in adult male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1366–R1373.
Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic–pituitary–adrenal axis activity in adult male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFSmurc%3D&md5=7970c2f579e6cf41a9d2a0f07b9b2fbaCAS | 16397092PubMed |

Smith, J. T. (2003). Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology 144, 3024–3030.
Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvF2kt7s%3D&md5=2918abc798e398c742142ccfb5f80a13CAS | 12810558PubMed |

Sugden, M. C., Langdown, M. L., Munns, M. J., and Holness, M. J. (2001). Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring. Eur. J. Endocrinol. 145, 529–539.
Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy, and elicits hypertension associated with hyperleptinaemia in the early-growth-retarded adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Gisrs%3D&md5=42b7ed4f803a157dcebfaf07bcff236dCAS | 11581014PubMed |

Vaughan, O. R., Sferruzzi-Perri, A. N., and Fowden, A. L. (2012). Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J. Physiol. 590, 5529–5540.
Maternal corticosterone regulates nutrient allocation to fetal growth in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahur%2FI&md5=b99f243b8c9dcb469961dbec76ef200dCAS | 22930269PubMed |

Vaughan, O. R., Sferruzzi-Perri, A. N., Coan, P. M., and Fowden, A. L. (2013). Adaptations in placental phenotype depend on route and timing of maternal dexamethasone administration in mice. Biol. Reprod. 89, 80.
Adaptations in placental phenotype depend on route and timing of maternal dexamethasone administration in mice.Crossref | GoogleScholarGoogle Scholar | 23986571PubMed |

Watkins, A. J., Ursell, E., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., Wilkins, A., Perry, V. H., Sheth, B., Kwong, W. Y., Eckert, J. J., Wild, A. E., Hanson, M. A., Osmond, C., and Fleming, T. P. (2008). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306.
Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru7c%3D&md5=7da58a45068524e2f37eda9bff73707eCAS | 17989357PubMed |

Woods, L. L., and Weeks, D. A. (2005). Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R955–R962.
Prenatal programming of adult blood pressure: role of maternal corticosteroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFensb7J&md5=a321275665aed266f6f958ae3c58c3c8CAS | 15932969PubMed |

Xu, D., Chen, M., Pan, X. L., Xia, L. P., and Wang, H. (2011). Dexamethasone induces fetal developmental toxicity through affecting the placental glucocorticoid barrier and depressing fetal adrenal function. Environ. Toxicol. Pharmacol. 32, 356–363.
Dexamethasone induces fetal developmental toxicity through affecting the placental glucocorticoid barrier and depressing fetal adrenal function.Crossref | GoogleScholarGoogle Scholar | 22004954PubMed |