Histochemical structure and immunolocalisation of the hyaluronan system in the dromedary oviduct
Omnia Mohey-Elsaeed A , Waleed F. A. Marei B D , Ali A. Fouladi-Nashta C and Abdel-Aleem A. El-Saba AA Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
B Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
C Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK.
D Corresponding author. Email: wmarei@staff.cu.edu.eg
Reproduction, Fertility and Development 28(7) 936-947 https://doi.org/10.1071/RD14187
Submitted: 2 June 2014 Accepted: 31 October 2014 Published: 7 January 2015
Abstract
We investigated the local modulation of some histochemical properties of oviducts of the dromedary (Camelus dromedarius), focusing on the immnolocalisation of hyaluronic acid (HA) synthases (HAS2 and HAS3), hyaluronidases (HYAL2 and HYAL1) and the HA receptor CD44 in the ampulla and isthmus. Abundant acidic mucopolysaccharides (glycosaminoglycans) were detected by Alcian blue staining along the luminal surface of both ciliated and non-ciliated epithelial cells (LE). Staining for HAS2 was higher in the primary epithelial folds of the ampulla compared with the isthmus, especially in secretory cells, adluminal epithelial surface and supranuclear cell domain. HAS3 staining was stronger in the LE of the isthmus than ampulla. HYAL2 was detected in the LE in the ampulla and isthmus and was more intense in the adluminal projections of secretory cells. HYAL1 was weakly detected in the LE with no difference between the ampulla and isthmus. Strong CD44 immunostaining was present in the LE of the ampulla and isthmus. CD44 staining was higher in secretory cells than in ciliated epithelial cells and was higher in the supranuclear region than the basal region of the cytoplasm. In conclusion, we provide evidence that HA synthesis and turnover occur in the camel oviduct. Differences in HAS2 and HAS3 expression suggest regional differences in the molecular size of HA secreted in oviductal fluid that may influence oviduct–gamete interaction in the camel.
Additional keywords: camel, CD44, hyaluronidase.
References
Abe, H. (1996). The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol. Histopathol. 11, 743–768.| 1:STN:280:DyaK28vjs12nug%3D%3D&md5=62ea9b43a76f965b3f9780ad129c47d6CAS | 8839764PubMed |
Accogli, G., Monaco, D., El Bahrawy, K. A., El-Sayed, A. A., Ciannarella, F., Beneult, B., Lacalandra, G. M., and Desantis, S. (2014). Morphological and glycan features of the camel oviduct epithelium. Ann. Anat. 196, 197–205.
| Morphological and glycan features of the camel oviduct epithelium.Crossref | GoogleScholarGoogle Scholar | 24680377PubMed |
Apichela, S. A., Valz-Gianinet, J. N., Schuster, S., Jimenez-Diaz, M. A., Roldan-Olarte, E. M., and Miceli, D. C. (2010). Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro. Anim. Reprod. Sci. 118, 344–353.
| Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGlu7o%3D&md5=93372332e188a54022963ec6bc0d52adCAS | 19682806PubMed |
Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313.
| CD44 is the principal cell surface receptor for hyaluronate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkslGgtbc%3D&md5=59643970479523fab89376ea845c0daeCAS | 1694723PubMed |
Avilés, M., Gutiérrez-Adán, A., and Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Mol. Hum. Reprod. 16, 896–906.
| Oviductal secretions: will they be key factors for the future ARTs?Crossref | GoogleScholarGoogle Scholar | 20584881PubMed |
Bancroft, J. D., and Stevens, A. (1982). ‘Theory and practice of histological techniques.’ 2nd edn. (Churchill Livingstone: Edinburgh.)
Bergqvist, A. S., and Rodriguez-Martinez, H. (2006). Sulphated glycosaminoglycans (S-GAGs) and syndecans in the bovine oviduct. Anim. Reprod. Sci. 93, 46–60.
| Sulphated glycosaminoglycans (S-GAGs) and syndecans in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsrg%3D&md5=3eb1e95dbb3ace6fcd846b550827d239CAS | 16098694PubMed |
Buhi, W. C., Alvarez, I. M., Sudhipong, V., and Dones-Smith, M. M. (1990). Identification and characterization of de novo-synthesized porcine oviductal secretory proteins. Biol. Reprod. 43, 929–938.
| Identification and characterization of de novo-synthesized porcine oviductal secretory proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVSitA%3D%3D&md5=2f7ec053a87c77dec6a02bb5af13b7d1CAS | 2291929PubMed |
Crater, D. L., and van de Rijn, I. (1995). Hyaluronic acid synthesis operon (HAS) expression in Group A streptococci. J. Biol. Chem. 270, 18 452–18 458.
| Hyaluronic acid synthesis operon (HAS) expression in Group A streptococci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlCqtbk%3D&md5=018a360ceeafd78f80b8e2384f5dd422CAS |
Csoka, A. B., Frost, G. I., and Stern, R. (2001). The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508.
| The six hyaluronidase-like genes in the human and mouse genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1KltLg%3D&md5=407ad61e379efb794d37a68cd4ef297cCAS | 11731267PubMed |
Dougherty, B. A., and van de Rijn, I. (1993). Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in Group A streptococci. Demonstration of UDP-glucose dehydrogenase activity. J. Biol. Chem. 268, 7118–7124.
| 1:CAS:528:DyaK3sXktVaiurk%3D&md5=dc40ac29708e8b6e83aca56cc9ad0313CAS | 8463246PubMed |
Edelstam, G. A., Lundkvist, O. E., Wells, A. F., and Laurent, T. C. (1991). Localization of hyaluronan in regions of the human female reproductive tract. J. Histochem. Cytochem. 39, 1131–1135.
| Localization of hyaluronan in regions of the human female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFait7c%3D&md5=dbe08ce3f31fed91304daacc8c69bc4fCAS | 1856461PubMed |
Hawk, H. W. (1987). Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci. 70, 1487–1503.
| Transport and fate of spermatozoa after insemination of cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2szgvFSksg%3D%3D&md5=d4ae7bfbd81d9c137d94df42b5cc3f37CAS | 3305615PubMed |
Ismail, S. T. (1987). A review of reproduction in the female camel (Camelus dromedarius). Theriogenology 28, 363–371.
| A review of reproduction in the female camel (Camelus dromedarius).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFSrtw%3D%3D&md5=ba83b63e84a8c4f53038be04cc7c6851CAS | 16726319PubMed |
Itano, N., and Kimata, K. (2002). Mammalian hyaluronan synthases. IUBMB Life 54, 195–199.
| Mammalian hyaluronan synthases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVygu7o%3D&md5=d58014a330e2c3d7067af1ddc8d92327CAS | 12512858PubMed |
Lepperdinger, G., Strobl, B., and Kreil, G. (1998). HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J. Biol. Chem. 273, 22 466–22 470.
| HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvValt7s%3D&md5=df1a443eae387a1701e3e14c8a27d41bCAS |
Lesley, J., Hyman, R., and Kincade, P. W. (1993). CD44 and its interaction with extracellular matrix. Adv. Immunol. 54, 271–335.
| CD44 and its interaction with extracellular matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1yitb0%3D&md5=56a3771c1796b4537e2594b549cd4ed1CAS | 8379464PubMed |
Marei, W. F., Ghafari, F., and Fouladi-Nashta, A. A. (2012). Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes. Theriogenology 78, 670–677.
| Role of hyaluronic acid in maturation and further early embryo development of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1GqsL4%3D&md5=01797800496cad482e60d5ed11701b69CAS | 22541325PubMed |
Marei, W. F., Salavati, M., and Fouladi-Nashta, A. A. (2013). Critical role of hyaluronidase-2 during preimplantation embryo development. Mol. Hum. Reprod. 19, 590–599.
| Critical role of hyaluronidase-2 during preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGmt7vJ&md5=2924c2c62f29319d3e34ecc9fa6df414CAS | 23625939PubMed |
McCourt, P. A. (1999). How does the hyaluronan scrap-yard operate? Matrix Biol. 18, 427–432.
| How does the hyaluronan scrap-yard operate?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFans7g%3D&md5=6419277701bd9073de86b8ca41af3aa9CAS | 10601730PubMed |
Menezo, Y., and Guerin, P. (1997). The mammalian oviduct: biochemistry and physiology. Eur. J. Obstet. Gynecol. Reprod. Biol. 73, 99–104.
| The mammalian oviduct: biochemistry and physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslemtLg%3D&md5=fd05a01713118922f82713e306f6b4c4CAS | 9175697PubMed |
Menzel, E. J., and Farr, C. (1998). Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 131, 3–11.
| Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFWhtLk%3D&md5=4c16885d2271edf2c0b9013ec55c3ef1CAS | 9839614PubMed |
Nieder, G. L., and Macon, G. R. (1987). Uterine and oviducal protein secretion during early pregnancy in the mouse. J. Reprod. Fertil. 81, 287–294.
| Uterine and oviducal protein secretion during early pregnancy in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlslehs7g%3D&md5=d09146239480a4e1425a4fdc99b59146CAS | 3668958PubMed |
Ohno-Nakahara, M., Honda, K., Tanimoto, K., Tanaka, N., Doi, T., Suzuki, A., Yoneno, K., Nakatani, Y., Ueki, M., Ohno, S., Knudson, W., Knudson, C. B., and Tanne, K. (2004). Induction of CD44 and MMP expression by hyaluronidase treatment of articular chondrocytes. J. Biochem. 135, 567–575.
| Induction of CD44 and MMP expression by hyaluronidase treatment of articular chondrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFKgsrw%3D&md5=f7a610379f3a0b6c34e9b16afbea0b1bCAS | 15173194PubMed |
Parrish, J. J., Susko-Parrish, J. L., Uguz, C., and First, N. L. (1994). Differences in the role of cyclic adenosine 3′,5′-monophosphate during capacitation of bovine sperm by heparin or oviduct fluid. Biol. Reprod. 51, 1099–1108.
| Differences in the role of cyclic adenosine 3′,5′-monophosphate during capacitation of bovine sperm by heparin or oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFOqt7g%3D&md5=d55d158312caf63c00fb3c4cbcd382e3CAS | 7888489PubMed |
Ponglowhapan, S., Church, D. B., and Khalid, M. (2008). Differences in the expression of luteinizing hormone and follicle-stimulating hormone receptors in the lower urinary tract between intact and gonadectomised male and female dogs. Domest. Anim. Endocrinol. 34, 339–351.
| Differences in the expression of luteinizing hormone and follicle-stimulating hormone receptors in the lower urinary tract between intact and gonadectomised male and female dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12nsb0%3D&md5=7c429972d5441319454efbc453a98f4fCAS | 18023320PubMed |
Prehm, P. (1984). Hyaluronate is synthesized at plasma membranes. Biochem. J. 220, 597–600.
| 1:CAS:528:DyaL2cXkt1Wisr8%3D&md5=334d9b5e7426e76384e2839480844b87CAS | 6743290PubMed |
Raheem, K. A., Marei, W. F., Mifsud, K., Khalid, M., Wathes, D. C., and Fouladi-Nashta, A. A. (2013). Regulation of the hyaluronan system in ovine endometrium by ovarian steroids. Reproduction 145, 491–504.
| Regulation of the hyaluronan system in ovine endometrium by ovarian steroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVejsb4%3D&md5=ca25ca93b5cd4481042aac231d3d9a29CAS | 23630333PubMed |
Shimada, M., Yanai, Y., Okazaki, T., Noma, N., Kawashima, I., Mori, T., and Richards, J. S. (2008). Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development 135, 2001–2011.
| Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotF2hs7w%3D&md5=8ea292bf959ebcb40c2f8b1f3cddabf1CAS | 18434414PubMed |
Skidmore, J. A. (2003). The main challenges facing camel reproduction research in the 21st century. Reprod. Suppl. 61, 37–47.
| 1:CAS:528:DC%2BD3sXptFKhsL8%3D&md5=f8232b91c815e01acf6224841522afa9CAS | 14635925PubMed |
Skidmore, J. A., Billah, M., and Allen, W. R. (1996). The ovarian follicular wave pattern and induction of ovulation in the mated and non-mated one-humped camel (Camelus dromedarius). J. Reprod. Fertil. 106, 185–192.
| The ovarian follicular wave pattern and induction of ovulation in the mated and non-mated one-humped camel (Camelus dromedarius).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKnsbs%3D&md5=5f0437363971685f118f6530273ae582CAS | 8699400PubMed |
Spicer, A. P., Seldin, M. F., Olsen, A. S., Brown, N., Wells, D. E., Doggett, N. A., Itano, N., Kimata, K., Inazawa, J., and McDonald, J. A. (1997). Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 41, 493–497.
| Chromosomal localization of the human and mouse hyaluronan synthase genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivF2qs7c%3D&md5=0ad3b7e7dd5c5e5cc6ae0bdb45328c66CAS | 9169154PubMed |
Srikandakumar, A., Johnson, E. H., Mahgoub, O., Kadim, I. T., and Al-Ajmi, D. S. (2011). Anatomy and histology of the female reproductive tract of the arabian camel. Emir. J. Agric. Sci. 13, 23–26.
Stern, R. (2005). Hyaluronan metabolism: a major paradox in cancer biology. Pathol. Biol. (Paris) 53, 372–382.
| Hyaluronan metabolism: a major paradox in cancer biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVOiur4%3D&md5=4e9aa66304a8d649fd8a7df28964fde5CAS | 16085113PubMed |
Stern, R., Asari, A. A., and Sugahara, K. N. (2006). Hyaluronan fragments: an information-rich system. Eur. J. Cell Biol. 85, 699–715.
| Hyaluronan fragments: an information-rich system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnt7c%3D&md5=df6549beebf66f1fa993efce590fc086CAS | 16822580PubMed |
Teixeira Gomes, R. C., Verna, C., Nader, H. B., dos Santos Simoes, R., Dreyfuss, J. L., Martins, J. R., Baracat, E. C., de Jesus Simoes, M., and Soares, J. M. (2009). Concentration and distribution of hyaluronic acid in mouse uterus throughout the estrous cycle. Fertil. Steril. 92, 785–792.
| Concentration and distribution of hyaluronic acid in mouse uterus throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 18930192PubMed |
Termeer, C., Benedix, F., Sleeman, J., Fieber, C., Voith, U., Ahrens, T., Miyake, K., Freudenberg, M., Galanos, C., and Simon, J. C. (2002). Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med. 195, 99–111.
| Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslOjtw%3D%3D&md5=9407882de4f505ae40c715b35dac3f14CAS | 11781369PubMed |
Tienthai, P., Kjellen, L., Pertoft, H., Suzuki, K., and Rodriguez-Martinez, H. (2000). Localization and quantitation of hyaluronan and sulfated glycosaminoglycans in the tissues and intraluminal fluid of the pig oviduct. Reprod. Fertil. Dev. 12, 173–182.
| Localization and quantitation of hyaluronan and sulfated glycosaminoglycans in the tissues and intraluminal fluid of the pig oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSksrs%3D&md5=b8edc1520abd711d118ed124107f253aCAS | 11302427PubMed |
Tienthai, P., Kimura, N., Heldin, P., Sato, E., and Rodriguez-Martinez, H. (2003a). Expression of hyaluronan synthase-3 in porcine oviducal epithelium during oestrus. Reprod. Fertil. Dev. 15, 99–105.
| Expression of hyaluronan synthase-3 in porcine oviducal epithelium during oestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFSqsbc%3D&md5=69c052f556d57742967e10bacf07c4c2CAS | 12895406PubMed |
Tienthai, P., Yokoo, M., Kimura, N., Heldin, P., Sato, E., and Rodriguez-Martinez, H. (2003b). Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct during oestrus. Reproduction 125, 119–132.
| Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the epithelium of the pig oviduct during oestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFGlsL8%3D&md5=2d198ee7963b00026c167d83dac5da59CAS | 12622702PubMed |
Toole, B. P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4, 528–539.
| Hyaluronan: from extracellular glue to pericellular cue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1OktrY%3D&md5=de0a0ce52c4ec3de47546cca41099eb8CAS | 15229478PubMed |
Toyokawa, K., Harayama, H., and Miyake, M. (2005). Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44. Theriogenology 64, 378–392.
| Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Ggu7Y%3D&md5=b3b7559f0ed852924945bacc46754628CAS | 15955360PubMed |
Ulbrich, S. E., Schoenfelder, M., Thoene, S., and Einspanier, R. (2004). Hyaluronan in the bovine oviduct: modulation of synthases and receptors during the estrous cycle. Mol. Cell. Endocrinol. 214, 9–18.
| Hyaluronan in the bovine oviduct: modulation of synthases and receptors during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWgsr4%3D&md5=a965175cd7112f775f649dcb844ecdaeCAS | 15062540PubMed |
Underhill, C. (1992). CD44: the hyaluronan receptor. J. Cell Sci. 103, 293–298.
| 1:CAS:528:DyaK3sXitVOmurs%3D&md5=1bfa22366983681b35c23093efcc23d4CAS | 1282514PubMed |
Wang, Q., and Margolis, B. (2007). Apical junctional complexes and cell polarity. Kidney Int. 72, 1448–1458.
| Apical junctional complexes and cell polarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKltLrK&md5=fcf33f860f790fd6ef3f66746b2b863dCAS | 17914350PubMed |
Weigel, P. H., Hascall, V. C., and Tammi, M. (1997). Hyaluronan synthases. J. Biol. Chem. 272, 13 997–14 000.
| Hyaluronan synthases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFKrurY%3D&md5=98a529dcde0ad1ff68a1cca30e5acb6bCAS |
Whittingham, D. G. (1968). Development of zygotes in cultured mouse oviducts. I. The effect of varying oviductal conditions. J. Exp. Zool. 169, 391–397.
| Development of zygotes in cultured mouse oviducts. I. The effect of varying oviductal conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7ktVantA%3D%3D&md5=d45efb409524d2b6b5556971fb21f48aCAS | 5752480PubMed |
Xu, H., Ito, T., Tawada, A., Maeda, H., Yamanokuchi, H., Isahara, K., Yoshida, K., Uchiyama, Y., and Asari, A. (2002). Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72. J. Biol. Chem. 277, 17 308–17 314.
| Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslWgsLg%3D&md5=4b120f9189f233f1e942d608867df4d1CAS |