Discovery of human posterior head 20 (hPH20) and homo sapiens sperm acrosome associated 1 (hSPACA1) immunocontraceptive epitopes and their effects on fertility in male and female mice
Xuemei Chen A , Xiaodong Liu A , Xiuhua Ren A , Xuewu Li B , Li Wang C and Weidong Zang A DA Department of Human Anatomy, Basic Medical College of Zhengzhou University, Number 100, Kexue Road, Zhengzhou 450001, Henan, China.
B Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China.
C Department of Pathogenic Microorganism, Basic Medical College of Zhengzhou University, Number 100, Kexue Road, Zhengzhou 450001, Henan, China.
D Corresponding author. Email: zwd@zzu.edu.cn
Reproduction, Fertility and Development 28(4) 416-427 https://doi.org/10.1071/RD14134
Submitted: 13 May 2014 Accepted: 13 June 2014 Published: 11 September 2014
Abstract
The key goals of immunocontraception research are to obtain full contraceptive effects using vaccines administered to both males and females. Current research concerning human anti-sperm contraceptive vaccines is focused on delineating infertility-related epitopes to avoid autoimmune disease. We constructed phage-display peptide libraries to select epitope peptides derived from human posterior head 20 (hPH20) and homo sapiens sperm acrosome associated 1 (hSPACA1) using sera collected from infertile women harbouring anti-sperm antibodies. Following five rounds of selection, positive colonies were reconfirmed for reactivity with the immunoinfertile sera. We biopanned and analysed the chemical properties of four epitope peptides, named P82, Sa6, Sa37 and Sa76. Synthetic peptides were made and coupled to either bovine serum albumin (BSA) or ovalbumin. We used the BSA-conjugated peptides to immunise BALB/c mice and examined the effects on fertility in female and male mice. The synthetic peptides generated a sperm-specific antibody response in female and male mice that caused a contraceptive state. The immunocontraceptive effect was reversible and, with the disappearance of peptide-specific antibodies, there was complete restoration of fertility. Vaccinations using P82, Sa6 and Sa76 peptides resulted in no apparent side effects. Thus, it is efficient and practical to identify epitope peptide candidates by phage display. These peptides may find clinical application in the specific diagnosis and treatment of male and female infertility and contraceptive vaccine development.
Additional keywords: anti-sperm antibodies (ASAs), gene-specific peptide libraries, immunocontraceptive vaccine, immunoinfertile, male and female mice, phage display, sperm, synthetic peptide.
References
Bazan, J., Calkosinski, I., and Gamian, A. (2012). Phage display: a powerful technique for immunotherapy: vaccine delivery. Hum. Vaccin. Immunother. 8, 1829–1835.| Phage display: a powerful technique for immunotherapy: vaccine delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOnurc%3D&md5=4fd8fc1616da82774f3956c02fe48cdbCAS | 22906938PubMed |
Chamley, L. W., and Clarke, G. N. (2007). Antisperm antibodies and conception. Semin. Immunopathol. 29, 169–184.
| Antisperm antibodies and conception.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svgsVansg%3D%3D&md5=84678d9ea1eba5229453a299ac8fa1eaCAS | 17621702PubMed |
Chan, W. C., and White, P. D. (2000). ‘Fmoc Solid Phase Peptides Synthesis: A Practical Approach.’ ( M ). (Oxford University Press: Oxford.)
Chen, Y., Zhang, D., Xin, N., Xiong, Y., Chen, P., Li, B., Tu, X., and Lan, F. (2008). Construction of sperm-specific lactate dehydrogenase DNA vaccine and experimental study of its immunocontraceptive effect on mice. Sci. China C Life Sci. 51, 308–316.
| Construction of sperm-specific lactate dehydrogenase DNA vaccine and experimental study of its immunocontraceptive effect on mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1aqurk%3D&md5=7a69b08a73a4eb4996d5888d0f1cd0dfCAS | 18368308PubMed |
Devlin, J. J., Panganiban, L. C., and Devlin, P. E. (1990). Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406.
| Random peptide libraries: a source of specific protein binding molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVygsbY%3D&md5=6d0c151d147fd10103fd90c0439c10ccCAS | 2143033PubMed |
Eidne, K. A., Henery, C. C., and Aitken, R. J. (2000). Selection of peptides targeting the human sperm surface using random peptide phage display identify ligands homologous to ZP3. Biol. Reprod. 63, 1396–1402.
| Selection of peptides targeting the human sperm surface using random peptide phage display identify ligands homologous to ZP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslCksL4%3D&md5=20ec651788fa0a0d016f00cb662310feCAS | 11058544PubMed |
Esser, M. T., Marchese, R. D., Kierstead, L. S., Tussey, L. G., Wang, F., Chirmule, N., and Washabaugh, M. W. (2003). Memory T cells and vaccines. Vaccine 21, 419–430.
| Memory T cells and vaccines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFOjtg%3D%3D&md5=e71c4cb4cde4573c94cc46f7aefec48dCAS | 12531640PubMed |
Ferro, V. A., and Garside, D. A. (2011). Reproductive component vaccine developments for contraceptive and non-contraceptive uses. Expert Opin. Ther. Pat. 21, 1473–1482.
| Reproductive component vaccine developments for contraceptive and non-contraceptive uses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWnu77P&md5=7aa6694fc29f247c4dbc92a6e9b5970dCAS | 21675927PubMed |
Ferro, V. A., and Mordini, E. (2004). Peptide vaccines in immunocontraception. Curr. Opin. Mol. Ther. 6, 83–89.
| 1:CAS:528:DC%2BD2cXntFOgsb8%3D&md5=da5cd519ca40d71aad7e47152c02eeafCAS | 15011785PubMed |
Gupta, S. K. (2003). Status of immunodiagnosis and immunocontraceptive vaccines in India. Adv. Biochem. Eng. Biotechnol. 85, 181–214.
| Status of immunodiagnosis and immunocontraceptive vaccines in India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFKgu78%3D&md5=3d70e42ebcf7d2511e30f4006dbcbb78CAS | 12930096PubMed |
Gupta, S. K., Srinivasan, V. A., Suman, P., Rajan, S., Nagendrakumar, S. B., Gupta, N., Shrestha, A., Joshi, P., and Panda, A. K. (2011). Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management. Am. J. Reprod. Immunol. 66, 51–62.
| Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGms7o%3D&md5=d1cd04f0f30ae434ff4b98e2c3b045a8CAS | 21501280PubMed |
Hao, Z., Wolkowicz, M. J., Shetty, J., Klotz, K., Bolling, L., Sen, B., Westbrook, V. A., Coonrod, S., Flickinger, C. J., and Herr, J. C. (2002). SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol. Reprod. 66, 735–744.
| SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeiur0%3D&md5=c687e6087818502de8c231d837f9edf4CAS | 11870081PubMed |
Khan, S. A., Suryawanshi, A. R., Ranpura, S. A., Jadhav, S. V., and Khole, V. V. (2009). Identification of novel immunodominant epididymal sperm proteins using combinatorial approach. Reproduction 138, 81–93.
| Identification of novel immunodominant epididymal sperm proteins using combinatorial approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsbo%3D&md5=692e77373f9d31667b79a94b79c5a779CAS | 19423663PubMed |
Levy, J. K. (2011). Contraceptive vaccines for the humane control of community cat populations. Am. J. Reprod. Immunol. 66, 63–70.
| Contraceptive vaccines for the humane control of community cat populations.Crossref | GoogleScholarGoogle Scholar | 21501281PubMed |
Menge, A. C., Christman, G. M., Ohl, D. A., and Naz, R. K. (1999). Fertilization antigen-1 removes antisperm autoantibodies from spermatozoa of infertile men and results in increased rates of acrosome reaction. Fertil. Steril. 71, 256–260.
| Fertilization antigen-1 removes antisperm autoantibodies from spermatozoa of infertile men and results in increased rates of acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7ktV2hsQ%3D%3D&md5=19dc064d27b4a881b17ffc03067cd7deCAS | 9988394PubMed |
Myles, D. G. (1993). Molecular mechanisms of sperm–egg membrane binding and fusion in mammals. Dev. Biol. 158, 35–45.
| Molecular mechanisms of sperm–egg membrane binding and fusion in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFCjsLw%3D&md5=4a457d2c3f2673f3b7d8e6b479c30cffCAS | 8330674PubMed |
Naz, R. K. (2004). Modalities for treatment of antisperm antibody mediated infertility: novel perspectives. Am. J. Reprod. Immunol. 51, 390–397.
| Modalities for treatment of antisperm antibody mediated infertility: novel perspectives.Crossref | GoogleScholarGoogle Scholar | 15212677PubMed |
Naz, R. K. (2005). Search for peptide sequences involved in human antisperm antibody-mediated male immunoinfertility by using phage display technology. Mol. Reprod. Dev. 72, 25–30.
| Search for peptide sequences involved in human antisperm antibody-mediated male immunoinfertility by using phage display technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlCls7o%3D&md5=4ddf66425785b2201ac11c4f242dedf4CAS | 15895468PubMed |
Naz, R. K. (2006a). Effect of fertilization antigen (FA-1) DNA vaccine on fertility of female mice. Mol. Reprod. Dev. 73, 1473–1479.
| Effect of fertilization antigen (FA-1) DNA vaccine on fertility of female mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksb%2FL&md5=81fd55c28a25062547d62b355456a04cCAS | 16894551PubMed |
Naz, R. K. (2006b). Effect of sperm DNA vaccine on fertility of female mice. Mol. Reprod. Dev. 73, 918–928.
| Effect of sperm DNA vaccine on fertility of female mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFahsrY%3D&md5=e7e62acf070e452169dea3255de2d95cCAS | 16596628PubMed |
Naz, R. K. (2009). Development of genetically engineered human sperm immunocontraceptives. J. Reprod. Immunol. 83, 145–150.
| Development of genetically engineered human sperm immunocontraceptives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntr7J&md5=8b47acbc5ccfee0742f8b19550e4f985CAS | 19853924PubMed |
Naz, R. K. (2011). Antisperm contraceptive vaccines: where we are and where we are going? Am. J. Reprod. Immunol. 66, 5–12.
| Antisperm contraceptive vaccines: where we are and where we are going?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGmsr4%3D&md5=41af72752b1ca7e584eb25bf24cd168aCAS | 21481057PubMed |
Naz, R., and Aleem, A. (2007). Effect of immunization with six sperm peptide vaccines on fertility of female mice. Soc. Reprod. Fertil. Suppl. 63, 455–464.
| 1:CAS:528:DC%2BD1cXpvVykurg%3D&md5=aa9e8b206fb1dd7bb203854cdd45cdb0CAS | 17566291PubMed |
Naz, R. K., and Chauhan, S. C. (2002). Human sperm-specific peptide vaccine that causes long-term reversible contraception. Biol. Reprod. 67, 674–680.
| Human sperm-specific peptide vaccine that causes long-term reversible contraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqur0%3D&md5=c75b3658787f28b653e03fd44facded1CAS | 12135913PubMed |
Naz, R. K., and Packianathan, J. L. R. (2000). Antibodies to human sperm YLP12 peptide that is involved in egg binding inhibit human sperm capacitation/acrosome reaction. Arch. Androl. 45, 227–232.
| Antibodies to human sperm YLP12 peptide that is involved in egg binding inhibit human sperm capacitation/acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVShsb0%3D&md5=7db49c2de706dc7560caf6de90cdee80CAS | 11111871PubMed |
Naz, R. K., Zhu, X., and Kadam, A. L. (2000). Identification of human sperm peptide sequence involved in egg binding for immunocontraception. Biol. Reprod. 62, 318–324.
| Identification of human sperm peptide sequence involved in egg binding for immunocontraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOrtw%3D%3D&md5=6c56fb3ec9abc0dcc90d7f81164452eaCAS | 10642568PubMed |
Naz, R. K., Chauhan, S. C., and Trivedi, R. N. (2002). Monoclonal antibody against human sperm-specific YLP12 peptide sequence involved in oocyte binding. Arch. Androl. 48, 169–175.
| Monoclonal antibody against human sperm-specific YLP12 peptide sequence involved in oocyte binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFSrt7Y%3D&md5=7919889900e6cba13105b656707e73fbCAS | 11964208PubMed |
Naz, R. K., Gupta, S. K., Gupta, J. C., Vyas, H. K., and Talwar, A. G. (2005). Recent advances in contraceptive vaccine development: a mini-review. Hum. Reprod. 20, 3271–3283.
| Recent advances in contraceptive vaccine development: a mini-review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GltrrE&md5=f5f651b53497a0e9db953be95c2577f5CAS | 16113040PubMed |
Primakoff, P., Lathrop, W., Woolman, L., Cowan, A., and Myles, D. (1988). Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature 335, 543–546.
| Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVelur8%3D&md5=10ac9b20cd3b9c38fce6dae7af81297bCAS | 3419530PubMed |
Samoylova, T. I., Cochran, A. M., Samoylov, A. M., Schemera, B., Breiteneicher, A. H., Ditchkoff, S. S., Petrenko, V. A., and Cox, N. R. (2012). Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife. J. Biotechnol. 162, 311–318.
| Phage display allows identification of zona pellucida-binding peptides with species-specific properties: novel approach for development of contraceptive vaccines for wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejsLnE&md5=58b616b0d13856f3423d3a1f80ec6be4CAS | 23079080PubMed |
Sinisi, A. A., Di Finizio, B., Pasquali, D., Scurini, C., D’Apuzzo, A., and Bellastella, A. (1993). Prevalence of antisperm antibodies by SpermMAR test in subjects undergoing a routine sperm analysis for infertility. Int. J. Androl. 16, 311–314.
| Prevalence of antisperm antibodies by SpermMAR test in subjects undergoing a routine sperm analysis for infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7gt1yrug%3D%3D&md5=b69c75b257ce643a5fea5d3091965de8CAS | 8276524PubMed |
Smith, G. P., and Scott, J. K. (1993). Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.
| Libraries of peptides and proteins displayed on filamentous phage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Ciu7g%3D&md5=e6a30aa5f476d822e8a350b280b1e1c8CAS | 7682645PubMed |
Srinivasan, J., Tinge, S., Wright, R., Herr, J. C., and Curtiss, R. (1995). Oral immunization with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract. Biol. Reprod. 53, 462–471.
| Oral immunization with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVSlsr8%3D&md5=281a15df62514df7c2f32828818a9399CAS | 7492701PubMed |
Suri, A. (2007). Family of sperm associated antigens: relevance in sperm–egg interaction and immunocontraception. Soc. Reprod. Fertil. Suppl. 63, 433–443.
| 1:CAS:528:DC%2BD1cXpvVykurw%3D&md5=7c8ccb204c51f833c0bf60cc1444b562CAS | 17566289PubMed |
Tung, K. S., Primakoff, P., Woolman-Gamer, L., and Myles, D. G. (1997). Mechanism of infertility in male guinea pigs immunized with sperm PH-20. Biol. Reprod. 56, 1133–1141.
| Mechanism of infertility in male guinea pigs immunized with sperm PH-20.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2ktbw%3D&md5=5ba67ae8b3a20f7ffb9354522fb5d157CAS | 9160711PubMed |
Wang, Z., Widgren, E. E., Richardson, R. T., and Orand, M. G. (2007). Eppin: a molecular strategy for male contraception. Soc. Reprod. Fertil. Suppl. 65, 535–542.
| 1:CAS:528:DC%2BD1cXpvVyrurk%3D&md5=f6817e2b42afaa0fb8d5cc7e9c74a5f4CAS | 17644992PubMed |
Weidong, C. X. (2008). Effect of hPH-20 DNA vaccine on fertility of female mouse. Chinese J. Anat. 31, 799–801.
Weidong, Z., Xuemei, C., Xiuhua, R., Qingzan, Z., Jing, C., and Li, H. (2006). Construction of hSAMP32 eukaryotic expression-vector and its expression in NIH3T3 cells. J. Zhengzhou Univ. (Med. Sci.) 41, 634–636.
Wu, J., Park, J. P., Dooley, K., Cropek, D. M., West, A. C., and Banta, S. (2011). Rapid development of new protein biosensors utilizing peptides obtained via phage display. PLoS ONE 6, e24948.
| Rapid development of new protein biosensors utilizing peptides obtained via phage display.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOltbnO&md5=0de5d2fffda44b6d6edc7275868a3749CAS | 22003385PubMed |
Zhang, W., Xiong, Y., Zhao, M., Zou, H., Ye, X., and Liu, J. (2011). Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinformatics 12, 341.
| Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt12htb0%3D&md5=1453dd49a6b5180912492d1f4925fa1bCAS | 21846404PubMed |