Transgenerational inheritance of ovarian development deficiency induced by maternal diethylhexyl phthalate exposure
Xi-Feng Zhang A B , Teng Zhang A , Zhe Han B , Jing-Cai Liu A C , Yu-Ping Liu D , Jun-Yu Ma A , Lan Li A and Wei Shen A EA Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
B College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
C College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
D Hospital of School, Qingdao Agricultural University, Qingdao 266109, China.
E Corresponding author. Email: shenwei427@163.com
Reproduction, Fertility and Development 27(8) 1213-1221 https://doi.org/10.1071/RD14113
Submitted: 26 March 2014 Accepted: 5 May 2014 Published: 12 June 2014
Abstract
Diethylhexyl phthalate (DEHP) is a widely used industrial additive for increasing plastic flexibility. It disrupts the physiological functions of endogenous hormones and induces abnormal development of mammals. The objectives of the present study were to evaluate the effects of DEHP exposure on ovarian development of pregnant mice and whether the effects are inheritable. We found that the synthesis of oestradiol in pregnant mice after DEHP exposure was significantly decreased, and that the first meiotic progression of female fetal germ cells was delayed. Furthermore, the DNA methylation level of Stra8 was increased and the expression levels of Stra8 were significantly decreased. An accelerated rate of follicle recruitment in F1 mice was responsible for the depletion of the primordial-follicle pool. Maternal DEHP exposure also significantly accelerated the recruitment of primordial follicles in F2 mice. In conclusion, our results indicated that maternal DEHP exposure induced ovarian development deficiency, which was transgenerational in mice.
Additional keywords: DEHP, follicle, meiosis, oocyte, premature oocyte failure.
References
Anderson, O. S., Nahar, M. S., Faulk, C., Jones, T. R., Liao, C., Kannan, K., Weinhouse, C., Rozek, L. S., and Dolinoy, D. C. (2012). Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ. Mol. Mutagen. 53, 334–342.| Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslaqtbs%3D&md5=619c9b9233c62def365382cfe879a28aCAS | 22467340PubMed |
Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L., and Taylor, H. S. (2010). Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine oestrogen response. FASEB J. 24, 2273–2280.
| Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine oestrogen response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptV2ktLY%3D&md5=7bc63eaf71cd3094d193139d65ef9fedCAS | 20181937PubMed |
Chao, H. H., Zhang, X. F., Chen, B., Pan, B., Zhang, L. J., Li, L., Sun, X. F., Shi, Q. H., and Shen, W. (2012). Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the oestrogen receptor signalling pathway. Histochem. Cell Biol. 137, 249–259.
| Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the oestrogen receptor signalling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpslKrsQ%3D%3D&md5=a86ac146b8d02f56e3b26506bdc339b6CAS | 22131059PubMed |
Chen, C. L., Fu, X. F., Wang, L. Q., Wang, J. J., Ma, H. G., Cheng, S. F., Hou, Z. M., Ma, J. M., Quan, G. B., Li, L., and Shen, W. (2014). Primordial-follicle assembly was regulated by Notch signaling pathway in the mice. Mol. Biol. Rep. 41, 1891–1899.
| Primordial-follicle assembly was regulated by Notch signaling pathway in the mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFOmug%3D%3D&md5=d8cb360a5588f5ead5dbd4f849b5f396CAS | 24430295PubMed |
Cooke, P. S., and Naaz, A. (2004). Role of oestrogens in adipocyte development and function. Exp. Biol. Med. (Maywood) 229, 1127–1135.
| 1:CAS:528:DC%2BD2cXhtVOmtb7I&md5=65582cb2343f504c818d5466cc7b5092CAS | 15564439PubMed |
Dolinoy, D. C., Huang, D., and Jirtle, R. L. (2007). Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA 104, 13056–13061.
| Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1GhsL8%3D&md5=fc4f734fbdd4ee07990b25d16d42253cCAS | 17670942PubMed |
Dong, H. S., Pan, Q. J., Zhang, H. Q., Chen, B., and Yue, W. B. (2011). Oestrogen inhibits the early development of mouse follicles through regulating the expression of Kit ligand. Biochem. Biophys. Res. Commun. 410, 659–664.
| Oestrogen inhibits the early development of mouse follicles through regulating the expression of Kit ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslCnt7w%3D&md5=30b437599457a3bc3c88d16499aaba32CAS |
Doyle, T. J., Bowman, J. L., Windell, V. L., McLean, D. J., and Hee, K. (2013). Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ-cell associations and spermatogonial stem cells in mice. Biol. Reprod. 88, 112.
| Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ-cell associations and spermatogonial stem cells in mice.Crossref | GoogleScholarGoogle Scholar | 23536373PubMed |
Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838.
| Oocyte control of ovarian follicular development and function in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjsw%3D%3D&md5=cdc1c1badaf413b8c68ef14a880dd597CAS | 11732978PubMed |
Feng, Y. M., Liang, G. J., Pan, B., Qin, X. S., Zhang, X. F., Chen, C. L., Li, L., Cheng, S. F., De Felici, M., and Shen, W. (2014a). Notch pathway regulates female germ-cell meiosis progression and early oogenesis events in fetal mouse. Cell Cycle 13, 782–791.
| Notch pathway regulates female germ-cell meiosis progression and early oogenesis events in fetal mouse.Crossref | GoogleScholarGoogle Scholar | 24398584PubMed |
Feng, X. L., Sun, Y. C., Zhang, M., Feng, Y. N., Liu, J. C., Wang, H. H., Cheng, S. F., Li, L., Qin, G. Q., and Shen, W. (2014b). Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen. Reprod. Fertil. Dev. , .
| Insulin regulates primordial-follicle assembly in vitro by affecting germ-cell apoptosis and elevating oestrogen.Crossref | GoogleScholarGoogle Scholar |
Herreros, M. A., Encinas, T., Torres-Rovira, L., Garcia-Fernandez, R. A., Flores, J. M., Ros, J. M., and Gonzalez-Bulnes, A. (2013). Exposure to the endocrine disruptor di(2-ethylhexyl) phthalate affects female reproductive features by altering pulsatile LH secretion. Environ. Toxicol. Pharmacol. 36, 1141–1149.
| Exposure to the endocrine disruptor di(2-ethylhexyl) phthalate affects female reproductive features by altering pulsatile LH secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWisLnL&md5=f8a2d8733c2b46d63ad090583dca5ffdCAS | 24177578PubMed |
Hunt, P. A., Koehler, K. E., Susiarjo, M., Hodges, C. A., Ilagan, A., Voigt, R. C., Thomas, S., Thomas, B. F., and Hassold, T. J. (2003). Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 13, 546–553.
| Bisphenol A exposure causes meiotic aneuploidy in the female mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislChsb4%3D&md5=6e0435eeb0f81c47454214cf09e54e34CAS | 12676084PubMed |
Hunt, P. A., Lawson, C., Gieske, M., Murdoch, B., Smith, H., Marre, A., Hassold, T., and Vande Voort, C. A. (2012). Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc. Natl. Acad. Sci. USA 109, 17 525–17 530.
| Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltLjM&md5=7204f46ed52f158775333333ac7015e6CAS |
Kim, J. H., Rozek, L. S., Soliman, A. S., Sartor, M. A., Hablas, A., Seifeldin, I. A., Colacino, J. A., Weinhouse, C., Nahar, M. S., and Dolinoy, D. C. (2013). Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt. Environ. Health 12, 33.
| Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVKgtLw%3D&md5=f5abed383bf515fd9f9d3a3dab0106b6CAS | 23590724PubMed |
Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R. L., Perera, F. P., and Champagne, F. A. (2013). Sex-specific epigenetic disruption and behavioural changes following low-dose in utero bisphenol A exposure. Proc. Natl. Acad. Sci. USA 110, 9956–9961.
| Sex-specific epigenetic disruption and behavioural changes following low-dose in utero bisphenol A exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOrtLzJ&md5=fbd3c00eeba7a9d2acf8b4ad0b1d9b9cCAS | 23716699PubMed |
Lee, S. G., Kim, J. Y., Chung, J. Y., Kim, Y. J., Park, J. E., Oh, S., Yoon, Y. D., Yoo, K. S., Yoo, Y. H., and Kim, J. M. (2013). Bisphenol A exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17β-oestradiol synthesis via downregulation of aromatase in rat ovary. Environ. Health Perspect. 121, 663–669.
| Bisphenol A exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17β-oestradiol synthesis via downregulation of aromatase in rat ovary.Crossref | GoogleScholarGoogle Scholar | 23512349PubMed |
Li, L., Zhang, T., Qin, X., Ge, W., Ma, H. G., Sun, L., Hou, Z. M., Chen, H., Chen, P., Qin, G. Q., Shen, W., and Zhang, X. F. (2014). Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol. Biol. Rep. 41, 1227–1235.
| Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVGguw%3D%3D&md5=0e8a0aed70a6d620f48a31d20063b6cdCAS | 24390239PubMed |
Manikkam, M., Tracey, R., Guerrero-Bosagna, C., and Skinner, M. K. (2013). Plastics-derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 8, e55387.
| Plastics-derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Cgsr8%3D&md5=343df81bd050c51e2855ea098dd64c6aCAS | 23359474PubMed |
McCracken, J. A., Custer, E., and Lamsa, J. (1999). Luteolysis: a neuroendocrine-mediated event. Physiol. Rev. 79, 263–323.
| 1:CAS:528:DyaK1MXivFektLg%3D&md5=074c6537a7115feb0591a1e2a4d8bb8fCAS | 10221982PubMed |
McGee, E. A., and Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214.
| Initial and cyclic recruitment of ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3ksVahsw%3D%3D&md5=da44be5757ae8c50b4c218241556f95cCAS | 10782364PubMed |
McLaren, A., and Southee, D. (1997). Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107–113.
| Entry of mouse embryonic germ cells into meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksF2rsLc%3D&md5=b60f7ee5aa7f5378bde4f8c23c8f1ad0CAS | 9224678PubMed |
Menke, D. B., Koubova, J., and Page, D. C. (2003). Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol. 262, 303–312.
| Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVyksL0%3D&md5=73d42adcf0f3030661e3acbb27e97d76CAS | 14550793PubMed |
Milvae, R. A., Hinckley, S. T., and Carlson, J. C. (1996). Luteotropic and luteolitic mechanisms in the bovine corpus luteum. Theriogenology 45, 1327–1349.
| Luteotropic and luteolitic mechanisms in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Sqs74%3D&md5=83acfd864d7e3aa3adc70b2754336124CAS | 16727885PubMed |
Nagel, S. C., vom Saal, F. S., Thayer, K. A., Dhar, M. G., Boechler, M., and Welshons, W. V. (1997). Relative binding affinity–serum modified access (RBA–SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ. Health Perspect. 105, 70–76.
| Relative binding affinity–serum modified access (RBA–SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitleitLY%3D&md5=df2cdfb7da604b243b7d83977c43adc4CAS | 9074884PubMed |
Pan, B., Chao, H. H., Chen, B., Zhang, L. J., Li, L., Sun, X. F., and Shen, W. (2011). DNA methylation of germ-cell-specific basic helix-loop-helix (HLH) transcription factors, Sohlh2 and Figla during gametogenesis. Mol. Hum. Reprod. 17, 550–561.
| DNA methylation of germ-cell-specific basic helix-loop-helix (HLH) transcription factors, Sohlh2 and Figla during gametogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSgsr%2FO&md5=975de2d87c294cdb2de669c10f09a0d8CAS | 21427160PubMed |
Patel, B. B., Raad, M., Sebag, I. A., and Chalifour, L. E. (2013). Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression and DNA methylation in adult mice. Toxicol. Sci. 133, 174–185.
| Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression and DNA methylation in adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Ohsb8%3D&md5=9235c23852a8c455791a25d8b547ac36CAS | 23418087PubMed |
Qiao, J., Feng, H. L., Wang, Z. B., Miao, Y. L., Wang, Q., Yu, Y., Wei, Y. C., Yan, J., Wang, W. H., Shen, W., Sun, S. C., Schatten, H., and Sun, Q. Y. (2014). The root of reduced fertility in aged women and possible therapeutic options: current status and future prospects. Mol. Asp. Med. , .
Shen, W., Li, L., Bai, Z. D., Pan, Q. J., Ding, M. X., and Deng, H. (2007). In vitro development of the mouse fetal germ cells to mature oocytes. Reproduction 134, 223–231.
| In vitro development of the mouse fetal germ cells to mature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrfP&md5=8e9bcc5c78064f412792fb12572b056eCAS | 17660232PubMed |
Susiarjo, M., Hassold, T. J., Freeman, E., and Hunt, P. A. (2007). Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 3, e5.
| Bisphenol A exposure in utero disrupts early oogenesis in the mouse.Crossref | GoogleScholarGoogle Scholar | 17222059PubMed |
Susiarjo, M., Sasson, I., Mesaros, C., and Bartolomei, M. S. (2013). Bisphenol A exposure disrupts genomic imprinting in the mouse. PLoS Genet. 9, e1003401.
| Bisphenol A exposure disrupts genomic imprinting in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1aqsLo%3D&md5=a83f9a380ea76d75e102daa0c41d035cCAS | 23593014PubMed |
Themmen, A. P. N., and Huhtaniemi, I. T. (2000). Mutations of gonadotrophins and gonadotrophin receptors: elucidating the physiology and pathophysiology of pituitary–gonadal function. Endocr. Rev. 21, 551–583.
| Mutations of gonadotrophins and gonadotrophin receptors: elucidating the physiology and pathophysiology of pituitary–gonadal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2ru7Y%3D&md5=8bc66a0d6a041e2b6775da7f5a0aa41aCAS |
Ulloa-Aguirre, A., Zariñán, T., Pasapera, A. M., Casas-González, P., and Dias, J. A. (2007). Multiple facets of follicle-stimulating hormone receptor function. Endocrine 32, 251–263.
| Multiple facets of follicle-stimulating hormone receptor function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Gltrk%3D&md5=c40cf8b84fd104a95e83371c8bb2bb60CAS | 18246451PubMed |
Yan, Y., Gong, Z., Zhang, L., Li, Y., Li, X., Zhu, L., and Sun, L. (2013). Association of follicle-stimulating hormone receptor polymorphisms with ovarian response in Chinese women: a prospective clinical study. PLoS ONE 8, e78138.
| Association of follicle-stimulating hormone receptor polymorphisms with ovarian response in Chinese women: a prospective clinical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12jsLrL&md5=031a0f2d69935481e6e870115f6dbff8CAS | 24167601PubMed |
Zhang, H. Q., Zhang, X. F., Zhang, L. J., Chao, H. H., Pan, B., Feng, Y. M., Li, L., Sun, X. F., and Shen, W. (2012a). Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol. Biol. Rep. 39, 5651–5657.
| Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVCitLc%3D&md5=aeba7ba97358b9ec9d5f74437c2082f2CAS | 22187349PubMed |
Zhang, X. F., Zhang, L. J., Feng, Y. N., Chen, B., Feng, Y. M., Liang, G. J., Li, L., and Shen, W. (2012b). Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol. Biol. Rep. 39, 8621–8628.
| Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyksL7L&md5=fda540346872ffdcdaee0cb70e98c206CAS | 22699882PubMed |
Zhang, G. L., Zhang, X. F., Feng, Y. M., Li, L., Sun, X. F., Sun, Z. Y., and Shen, W. (2013a). Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod. Fertil. Dev. 25, 847–859.
| Exposure to bisphenol A results in a decline in mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSrtrzF&md5=4f2353cce5e6d31d46e33a0b83048516CAS | 22951085PubMed |
Zhang, X. F., Zhang, L. J., Li, L., Feng, Y. N., Chen, B., Ma, J. M., Huynh, E., Shi, Q. H., De Felici, M., and Shen, W. (2013b). Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ. Mol. Mutagen. 54, 354–361.
| Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Cjs7k%3D&md5=f56d1928f89572e23e44a2e7b1ed51b5CAS | 23625783PubMed |
Zhang, X. F., Zhang, T., Wang, L., Zhang, H. Y., Chen, Y. D., Qin, X. S., Feng, Y. M., Feng, Y. N., Shen, W., and Li, L. (2013c). Effects of diethylhexyl phthalate (DEHP) given neonatally on spermatogenesis of mice. Mol. Biol. Rep. 40, 6509–6517.
| Effects of diethylhexyl phthalate (DEHP) given neonatally on spermatogenesis of mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2jsL3M&md5=70f0d20fabd1c0327344f8607b460279CAS | 24057186PubMed |
Zhang, L. J., Chen, B., Feng, X. L., Ma, H. G., Sun, L. L., Feng, Y. M., Liang, G. J., Cheng, S. F., Li, L., and Shen, W. (2014a). Exposure to brefeldin A promotes initiation of meiosis in murine female germ cells. Reprod. Fertil. Dev. , .
| Exposure to brefeldin A promotes initiation of meiosis in murine female germ cells.Crossref | GoogleScholarGoogle Scholar |
Zhang, T., Li, L., Qin, X. S., Zhou, Y., Zhang, X. F., Wang, L. Q., De Felici, M., Chen, H., Qin, G. Q., and Shen, W. (2014b). Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs newborn mouse primordial follicle assembly in vitro. Environ. Mol. Mutagen , .
| Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs newborn mouse primordial follicle assembly in vitro.Crossref | GoogleScholarGoogle Scholar | 24458533PubMed |