Addition of l-ascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos
Miriam Castillo-Martín A C , Marc Yeste B , Albert Soler A , Roser Morató A and Sergi Bonet AA Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.
B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra, Spain.
C Corresponding author. Email: miriam.castillo@udg.edu
Reproduction, Fertility and Development 27(7) 1115-1123 https://doi.org/10.1071/RD14078
Submitted: 21 January 2014 Accepted: 21 March 2014 Published: 17 April 2014
Abstract
The aim of the present study was to determine the effect of l-ascorbic acid on embryo quality and gene expression of porcine blastocysts after supplementations of in vitro culture medium and/or vitrification–warming media. Embryo quality, in terms of total cell number (TCN), DNA fragmentation and peroxide levels, together with the relative transcript abundance of BCL-2 associated X protein (BAX), BCL2-like 1 (BCL2L1), POU class 5 homeobox 1 (POU5F1) and heat shock protein 70 (HSPA1A), was analysed. In Experiment 1, gene expression and embryo quality of fresh blastocysts were evaluated after culture with or without l-ascorbic acid; no significant differences were observed between the groups. In Experiment 2, blastocysts cultured with or without l-ascorbic acid were vitrified using two different vitrification solutions, supplemented or not with l-ascorbic acid. Supplementation of culture and vitrification media significantly enhanced survival rates and reduced peroxide levels. No significant differences in TCN, DNA fragmentation and BAX, BCL2L1 and POU5F1 expression were found in vitrified blastocysts among experimental groups. Vitrification procedures increase HSPA1A transcript abundance, but this increase was significantly lower in embryos cultured and/or vitrified with l-ascorbic acid. Thus, supplementing culture and/or vitrification media with l-ascorbic acid enhances survival rates of porcine blastocysts, suggesting a relationship with HSPA1A expression.
Additional keywords: antioxidant, Cryotop, gene expression, peroxide levels.
References
Beere, H. M., Wolf, B. B., Cain, K., Mosser, D. D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R. I., Cohen, G. M., and Green, D. R. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475.| Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslymt74%3D&md5=d02033fce8b16ef78bd3aa817787542fCAS | 10934466PubMed |
Bermejo-Álvarez, P., Lonergan, P., Rath, D., Gutiérrez-Adan, A., and Rizos, D. (2010). Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reprod. Fertil. Dev. 22, 426–436.
| Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa.Crossref | GoogleScholarGoogle Scholar | 20047728PubMed |
Boiani, M., Eckardt, S., Schöler, H. R., and McLaughlin, K. J. (2002). Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219.
| Oct4 distribution and level in mouse clones: consequences for pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSmsLs%3D&md5=ea29d2c254c1bbb653ca60cf6b54c0baCAS | 12023300PubMed |
Brill, A., Torchinsky, A., Carp, H., and Toder, V. (1999). The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet. 16, 512–519.
| The role of apoptosis in normal and abnormal embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fkt1ygsA%3D%3D&md5=783bf69787d0c4f37029d5006d1eaf60CAS | 10575578PubMed |
Buettner, G. R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543.
| The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpsFKkug%3D%3D&md5=73b083af726598e0277c929358d9f579CAS | 8434935PubMed |
Castillo-Martín, M., Yeste, M., Morató, R., Mogas, T., and Bonet, S. (2013a). Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture. Reprod. Fertil. Dev. 25, 737–745.
| Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture.Crossref | GoogleScholarGoogle Scholar | 22953756PubMed |
Castillo-Martín, M., Bonet, S., Morató, R., and Yeste, M. (2013b). Comparative effects of adding β-mercaptoethanol or l-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos. Reprod. Fertil. Dev , .
| Comparative effects of adding β-mercaptoethanol or l-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos.Crossref | GoogleScholarGoogle Scholar | 23815877PubMed |
Castillo-Martín, M., Yeste, M., Pericuesta, E., Morató, R., Gutiérrez-Adán, A., and Bonet, S. (2014). Effects of vitrification on the expression of pluripotency, apoptotic and stress genes in in vitro-produced porcine blastocysts. Reprod. Fertil. Dev , .
| Effects of vitrification on the expression of pluripotency, apoptotic and stress genes in in vitro-produced porcine blastocysts.Crossref | GoogleScholarGoogle Scholar |
Chung, Y. G., Mann, M. R., Bartolomei, M. S., and Latham, K. E. (2002). Nuclear–cytoplasmic ‘tug of war’ during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos. Biol. Reprod. 66, 1178–1184.
| Nuclear–cytoplasmic ‘tug of war’ during cloning: effects of somatic cell nuclei on culture medium preferences of preimplantation cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu7Y%3D&md5=83026cf4655e424a53e0f9f703eeb244CAS | 11906939PubMed |
Craig, E. A., and Gross, C. A. (1991). Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16, 135–140.
| Is hsp70 the cellular thermometer?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVChtLs%3D&md5=96e011537929286801d88a6d043faa40CAS | 1877088PubMed |
Cuello, C., Gomis, J., Almiñana, C., Maside, C., Sanchez-Osorio, J., Gil, M. A., Sánchez, A., Parrilla, I., Vazquez, J. M., Roca, J., and Martinez, E. A. (2013). Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Anim. Reprod. Sci. 136, 296–302.
| Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaisrrF&md5=f4056b1874609e459c7929a752771c58CAS | 23238049PubMed |
Duncan, R. F., and Hershey, J. W. B. (1989). Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J. Cell Biol. 109, 1467–1481.
| Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFahtro%3D&md5=db64198756206846e15d93a4509abab1CAS | 2793930PubMed |
Feder, M. E., and Hoffman, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282.
| Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVejs7o%3D&md5=383b8d86ebbf060cb34226b9b70695d3CAS | 10099689PubMed |
Fujii, T., Sakurai, N., Osaki, T., Iwagami, G., Hirayama, H., Minamihashi, A., Hashizume, T., and Sawai, K. (2013). Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. J. Reprod. Dev. 59, 151–158.
| Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVOntLg%3D&md5=ea48819c5c6ff6979535a3d1e7989934CAS | 23257836PubMed |
Gajda, B., Romek, M., Grad, I., Krzysztofowicz, E., Bryla, M., and Smorag, Z. (2011). Lipid content and cryotolerance of porcine embryos cultured with phenazine ethosulfate. Cryo Letters 32, 349–357.
| 1:CAS:528:DC%2BC3MXhtlCnsrfK&md5=04c90cf2b3d084af50ad0bf40c094ef5CAS | 22020414PubMed |
Hashem, A., Hossein, M. S., Woo, J. Y., Kim, S., Kim, J. H., Lee, S. H., Koo, O. J., Park, S. M., Lee, E. G., Kang, S. K., and Lee, B. C. (2006). Effect of potassium simplex optimization medium and NCSU23 supplemented with beta-mercaptoethanol and amino acids of in vitro fertilized porcine embryos. J. Reprod. Dev. 52, 591–599.
| Effect of potassium simplex optimization medium and NCSU23 supplemented with beta-mercaptoethanol and amino acids of in vitro fertilized porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtl2lug%3D%3D&md5=483a5552a094de122ededa5f36c7c28fCAS | 16807505PubMed |
Hossein, M. S., Hashem, M. A., Jeong, Y. W., Lee, M. S., Kim, S., Kim, J. H., Koo, O. J., Park, S. M., Lee, E. G., Park, S. W., Kang, S. K., Lee, B. C., and Hwang, W. S. (2007). Temporal effects of alpha-tocopherol and l-ascorbic acid on in vitro fertilized porcine embryo development. Anim. Reprod. Sci. 100, 107–117.
| Temporal effects of alpha-tocopherol and l-ascorbic acid on in vitro fertilized porcine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvF2is7Y%3D&md5=214bd19a62bf61a1c2f2fa70327d6ae3CAS | 16860500PubMed |
Hosseini, S. M., Forouzanfar, M., Hajian, M., Asgari, V., Abedi, P., Hosseini, L., Ostadhosseini, S., Moulavi, F., Safahani Langrroodi, M., Sadeghi, H., Bahramian, H., Eghbalsaied, Sh., Mohammad, H., and Nasr-Esfahani, M. H. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming; which is the most important? J. Assist. Reprod. Genet. 26, 355–364.
| Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming; which is the most important?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrmslCgtw%3D%3D&md5=08d92dfa70d8913f887b7f30d2213c99CAS | 19543824PubMed |
Hu, J., Cheng, D., Gao, X., Bao, J., Ma, X., and Wang, H. (2012). Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress. Reprod. Domest. Anim. 47, 873–879.
| Vitamin C enhances the in vitro development of porcine pre-implantation embryos by reducing oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgsbY%3D&md5=066012fee08e059ce371feb81d470c94CAS | 22239270PubMed |
Huang, Y., Tang, X., Xie, W., Zhou, Y., Li, D., Zhou, Y., Zhu, J., Yuan, T., Lai, L., Pang, D., and Ouyang, H. (2011). Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem. Biophys. Res. Commun. 411, 397–401.
| Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1arsL4%3D&md5=be47946880d35df5f13cad47206dea68CAS | 21749856PubMed |
Jeong, Y. W., Park, S. W., Hossein, M. S., Kim, S., Kim, J. H., Lee, S. H., Kang, S. K., Lee, B. C., and Hwang, W. S. (2006). Antiapoptotic and embryotrophic effects of alpha-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology 66, 2104–2112.
| Antiapoptotic and embryotrophic effects of alpha-tocopherol and l-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsLnK&md5=7e1facc4eb88a7ce2063ff38cf42f50eCAS | 16876856PubMed |
Kere, M., Siriboon, C., Lo, N. W., Nguyen, N. T., and Ju, J. C. (2013). Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J. Reprod. Dev. 59, 78–84.
| 1:CAS:528:DC%2BC3sXjvFOjtLw%3D&md5=c8917bbbdad2c87ddc6a2b71466dfd22CAS | 23154385PubMed |
Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
| Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClur8%3D&md5=caaba78a42199c77bc40b8dc76413319CAS | 11906923PubMed |
Kitagawa, Y., Suzuki, K., Yoneda, A., and Watanabe, T. (2004). Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 62, 1186–1197.
| Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCqs7o%3D&md5=ff8ea666b6a313457ef8b4765cb9ffc2CAS | 15325546PubMed |
Korhonen, K., Julkunen, H., Kananen, K., Bredbacka, P., Tiirikka, T., Räty, M., Vartia, K., Kaimio, I., Kontinen, A., Halmekytö, M., Vilkki, J., Peippo, J., and Lindeberg, H. (2012). The effect of ascorbic acid during biopsy and cryopreservation on viability of bovine embryos produced in vivo. Theriogenology 77, 201–205.
| The effect of ascorbic acid during biopsy and cryopreservation on viability of bovine embryos produced in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rt7vN&md5=9097185783b29e5004abecfa869d7858CAS | 21924472PubMed |
Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
| Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |
Kuzmany, A., Havlicek, V., Wrenzycki, C., Wilkening, S., Brem, G., and Besenfelder, U. (2011). Expression of mRNA, before and after freezing, in bovine blastocysts cultured under different conditions. Theriogenology 75, 482–494.
| Expression of mRNA, before and after freezing, in bovine blastocysts cultured under different conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Knuw%3D%3D&md5=c367ff177bba9e7ca21a79342a4bad1dCAS | 21144573PubMed |
Lane, M., Maybach, J. M., and Gardner, D. K. (2002). Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum. Reprod. 17, 2686–2693.
| Addition of ascorbate during cryopreservation stimulates subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1GgtLo%3D&md5=4a3c2c1bd46039c03aeb8d24c737a2dbCAS | 12351549PubMed |
Larman, M. G., Katz-Jaffe, M. G., McCallie, B., Filipovits, J. A., and Gardner, D. K. (2011). Analysis of global gene expression following mouse blastocyst cryopreservation. Hum. Reprod. 26, 2672–2680.
| Analysis of global gene expression following mouse blastocyst cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Siur3K&md5=2ab2e0992788db6a3a48ff1b4443dd6fCAS | 21784737PubMed |
Lloyd, R. E., Romar, R., Matás, C., Gutiérrez-Adán, A., Holt, W. V., and Coy, P. (2009). Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction 137, 679–687.
| Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2ntbw%3D&md5=c2fa7080eda66dcf1bc535a9949e2044CAS | 19153191PubMed |
Men, H., Agca, Y., Critser, E. S., and Critser, J. K. (2005). Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw. Theriogenology 64, 1340–1349.
| Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslyjtr4%3D&md5=a20e33d102cf9d1952c2d814cb0ba3c3CAS | 16139610PubMed |
Olson, S. E., and Seidel, G. E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 62, 248–252.
| Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVOktA%3D%3D&md5=980f70bbfe23f4d5be0dc4640acd357dCAS | 10642559PubMed |
Otterbein, L. E., and Choi, A. M. (2000). Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1029–L1037.
| 1:CAS:528:DC%2BD3cXptFSksbk%3D&md5=631d2a553c0fd601c2bb0001cb00bf54CAS | 11076792PubMed |
Ovitt, C. E., and Schöler, H. R. (1998). The molecular biology of Oct-4 in the early mouse embryo. Mol. Hum. Reprod. 4, 1021–1031.
| The molecular biology of Oct-4 in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKntrw%3D&md5=9b6e3960f5986e9483b2309d16e77281CAS | 9835353PubMed |
Park, S. Y., Kim, E. Y., Cuy, X. S., Tae, J. C., Lee, W. D., Kim, N. H., Park, S. P., and Lim, J. H. (2006). Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts. Zygote 14, 125–131.
| Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyltb8%3D&md5=171a66b25cc87e39f741ae673b619e1fCAS | 16719948PubMed |
Paula-Lopes, F. F., and Hansen, P. J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–1177.
| 1:CAS:528:DC%2BD38XitlClu7g%3D&md5=fc4d8ae498c659272d6a10a627eb65ccCAS | 11906938PubMed |
Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=1884323dd0d93da095f4a6cffec6438fCAS | 8145215PubMed |
Rath, D., Long, C. R., Dobrinsky, J. R., Welch, G. R., Schreier, L. L., and Johnson, L. A. (1999). In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J. Anim. Sci. 77, 3346–3352.
| 1:CAS:528:DC%2BD3cXktFegtQ%3D%3D&md5=16477de4af4564c5a3d6107098339436CAS | 10641883PubMed |
Rooke, J. A., Watt, R. G., Ashworth, C. J., and McEvoy, T. G. (2012). Inclusion of bovine lipoproteins and the vitamin E analogue, Trolox, during in vitro culture of bovine embryos changes both embryo and fetal development. Reprod. Fertil. Dev. 24, 309–316.
| Inclusion of bovine lipoproteins and the vitamin E analogue, Trolox, during in vitro culture of bovine embryos changes both embryo and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oitbw%3D&md5=030e3c904219c938f12f0ad4e48308baCAS | 22281076PubMed |
Rose, R. C., and Bode, A. M. (1993). Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7, 1135–1142.
| 1:CAS:528:DyaK3sXms12mu74%3D&md5=9781611a84714ab555eb80055ebf9c09CAS | 8375611PubMed |
Rubessa, M., Boccia, L., Campanile, G., Longobardi, V., Albarella, S., Tateo, A., Zicarelli, L., and Gasparrini, B. (2011). Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio. Theriogenology 76, 1347–1355.
| Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio.Crossref | GoogleScholarGoogle Scholar | 21820719PubMed |
Saleh, A., Srinivasula, S. M., Balkir, L., Robbins, P. D., and Alnemri, E. S. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2, 476–483.
| Negative regulation of the Apaf-1 apoptosome by Hsp70.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslymt78%3D&md5=9a7d0ac96b65fdaa4167d8891a3b9367CAS | 10934467PubMed |
Seidel, G. E. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–235.
| Modifying oocytes and embryos to improve their cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gitr3O&md5=36a77c1f018bf38b1fb769b855a58c7dCAS | 16263160PubMed |
Sonna, L. A., Fujita, J., Gaffin, S. L., and Lilly, C. M. (2002). Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92, 1725–1742.
| 1:CAS:528:DC%2BD38XjtVKjtLg%3D&md5=93a9507f4dd4fca9eb175bfb22ec1daeCAS | 11896043PubMed |
Takahashi, M., Nagai, T., Okamura, N., Takahashi, H., and Okano, A. (2002). Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos. Biol. Reprod. 66, 562–567.
| Promoting effect of beta-mercaptoethanol on in vitro development under oxidative stress and cystine uptake of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitL4%3D&md5=cb6447c586c920a83a185490f8011520CAS | 11870058PubMed |
Takayama, S., Reed, J. C., and Homma, S. (2003). Heat-shock proteins as regulators of apoptosis. Oncogene 22, 9041–9047.
| Heat-shock proteins as regulators of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOmsrs%3D&md5=603e02c0c6777aa9f52fb421a8182d28CAS | 14663482PubMed |
Tarín, J. J., and Trounson, A. O. (1993). Effects of stimulation or inhibition of lipid peroxidation on freezing–thawing of mouse embryos. Biol. Reprod. 49, 1362–1368.
| Effects of stimulation or inhibition of lipid peroxidation on freezing–thawing of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 8286618PubMed |
Tatemoto, H., Ootaki, K., Shigeta, K., and Muto, N. (2001). Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation. Biol. Reprod. 65, 1800–1806.
| Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kntr0%3D&md5=5408fd79e2bfded3847faa645a2980f9CAS | 11717144PubMed |
Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70.
| Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 20565987PubMed |
Wang, X., Falcone, T., Attaran, M., Goldberg, J. M., Agarwal, A., and Sharma, R. K. (2002). Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril. 78, 1272–1277.
| Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate.Crossref | GoogleScholarGoogle Scholar | 12477524PubMed |
Wongsrikeao, P., Nagai, T., Agung, B., Taniguchi, M., Kunishi, M., Suto, S., and Otoi, T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Reprod. Dev. 74, 694–702.
| Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrtrY%3D&md5=9092c52754202bdf7e0a92ca46f7d93cCAS | 17154297PubMed |
Yamanaka, K., Sugimura, S., Wakai, T., Kawahara, M., and Sato, E. (2009). Difference sensitivity to culture conditions between in vitro fertilized and somatic cell nuclear transfer embryos in pig. J. Reprod. Dev. 55, 299–304.
| Difference sensitivity to culture conditions between in vitro fertilized and somatic cell nuclear transfer embryos in pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFehtbY%3D&md5=f1b405334e9870f33983108db7533d2dCAS | 19293559PubMed |