Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

In vitro interaction between resistin and peroxisome proliferator-activated receptor γ in porcine ovarian follicles

Agnieszka Rak-Mardyła A B and Eliza Drwal A
+ Author Affiliations
- Author Affiliations

A Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.

B Corresponding author. Email: agnieszka.rak@uj.edu.pl

Reproduction, Fertility and Development 28(3) 357-368 https://doi.org/10.1071/RD14053
Submitted: 12 February 2014  Accepted: 13 June 2014   Published: 18 July 2014

Abstract

In the present study, using real-time polymerase chain reaction and immunoblotting methods, we quantified the expression of peroxisome proliferator-activated receptor (PPAR) γ, PPARα and PPARβ in different sized ovarian follicles (small (SF), medium (MF) and large (LF) follicles) in prepubertal and adult pigs. In prepubertal pigs, PPARγ and PPARα expression was highest in LF; however, PPARβ expression did not differ among SF, MF and LF. In mature pigs, only protein expression of PPARγ and PPARα increased during ovarian follicle development. Following identification of very high levels of PPARγ expression in LF in prepubertal and adult pigs, using in vitro culture of ovarian follicles, we determined the effect of resistin at 0.1, 1 and 10 ng mL–1 on PPARγ mRNA and protein expression and the effect of rosiglitazone at 25 and 50 µM (a PPARγ agonist) on resistin mRNA and protein expression. Resistin increased PPARγ expression in ovarian follicles in both prepubertal and adult pigs, whereas rosiglitazone had an inhibitory effect on resistin expression. The role of PPARγ in regulating the effects of resistin on ovarian steroidogenesis was investigated using GW9662 (a PPARγ antagonist at dose of 1 μM). In these studies, GW9662 reversed the effect of resistin on steroid hormone secretion. The data suggest that there is local cooperation between resistin and PPARγ expression in the porcine ovary. Resistin significantly increased the expression of PPARγ, whereas PPARγ decreased resistin expression; thus, PPARγ is a new key regulator of resistin expression and function.

Additional keywords: GW9662, mRNA, ovary, pig, protein expression, rosiglitazone, steroidogenesis.


References

Adeghate, E. (2004). An update on the biology and physiology of resistin. Cell. Mol. Life Sci. 61, 2485–2496.
An update on the biology and physiology of resistin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOmt7nP&md5=616b6919caf98589cb419cc30c741923CAS | 15526156PubMed |

Banerjee, J., and Komar, C. M. (2006). Effects of luteinizing hormone on peroxisome proliferator-activated receptor gamma in the rat ovary before and after the gonadotropin surge. Reproduction 131, 93–101.
Effects of luteinizing hormone on peroxisome proliferator-activated receptor gamma in the rat ovary before and after the gonadotropin surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFegsro%3D&md5=8fa9382283c558f1205e4dad54f09334CAS | 16388013PubMed |

Benomar, Y., Gertler, A., De Lacy, P., Crépin, D., Ould Hamouda, H., Riffault, L., and Taouis, M. (2013). Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes 62, 102–114.
Central resistin overexposure induces insulin resistance through Toll-like receptor 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Gktw%3D%3D&md5=c1544e0fef0188bdc8a635e42a6de3c3CAS | 22961082PubMed |

Bogacka, I., and Bogacki, M. (2011). The quantitative expression of peroxisome proliferator activated receptor (PPAR) genes in porcine endometrium through the estrous cycle and early pregnancy. J. Physiol. Pharmacol. 62, 559–565.
| 1:CAS:528:DC%2BC38Xit1Sgt7s%3D&md5=2c9934ad6cc3bea737e052afd9d4b8f6CAS | 22204804PubMed |

Bogacka, I., Bogacki, M., and Wasielak, M. (2013). The effect of embryo presence on the expression of peroxisome proliferator activated receptor (PPAR) genes in the porcine reproductive system during periimplantation. Acta Vet. Hung. 61, 405–415.
The effect of embryo presence on the expression of peroxisome proliferator activated receptor (PPAR) genes in the porcine reproductive system during periimplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKgtL3L&md5=e6ca19f4866bb2d05b4b478e3f2584bbCAS | 23921352PubMed |

Chen, Q., Sun, X., Chen, J., Cheng, L., Wang, J., Wang, Y., and Sun, Z. (2009). Direct rosiglitazone action on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells. Reprod. Biol. Endocrinol. 7, 147.
Direct rosiglitazone action on steroidogenesis and proinflammatory factor production in human granulosa-lutein cells.Crossref | GoogleScholarGoogle Scholar | 20003221PubMed |

Choi, K. C., Lee, S. Y., Yoo, H. J., Ryu, O. H., Lee, K. W., Kim, S. M., Baik, S. H., and Choi, K. M. (2007). Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 357, 62–67.
Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFeitL8%3D&md5=92aaa01f43170ead3a8e5ab6edd06f34CAS | 17418807PubMed |

Cui, Y., Miyoshi, K., Claudio, E., Siebenlist, U. K., Gonzalez, F. J., Flaws, J., Wagner, K. U., and Hennighausen, L. (2002). Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J. Biol. Chem. 277, 17 830–17 835.
Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVCntrw%3D&md5=fc285290ba49d21ea6639dc8ff9b312cCAS |

Dai, M. H., Xia, T., Chen, X. D., Gan, L., Feng, S. Q., Qiu, H., Peng, Y., and Yang, Z. Q. (2006). Cloning and characterization of porcine resistin gene. Domest. Anim. Endocrinol. 30, 88–97.
Cloning and characterization of porcine resistin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVelsg%3D%3D&md5=77f855467592ac6ae7afed2690986dd5CAS | 16023825PubMed |

Daquinag, A. C., Zhang, Y., Amaya-Manzanares, F., Simmons, P. J., and Kolonin, M. G. (2011). An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9, 74–86.
An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFansrw%3D&md5=f7ef758fa29b2e822044782e7d6fea8eCAS | 21683670PubMed |

Froment, P., Fabre, S., Dupont, J., Pisselet, C., Chesneau, D., Staels, B., and Monget, P. (2003). Expression and functional role of peroxisome proliferator-activated receptor-γ in ovarian folliculogenesis in the sheep. Biol. Reprod. 69, 1665–1674.
Expression and functional role of peroxisome proliferator-activated receptor-γ in ovarian folliculogenesis in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2rsrY%3D&md5=d937d679d320579df429b0498f43d2f4CAS | 12890736PubMed |

Froment, P., Gizard, F., Defever, D., Staels, B., Dupont, J., and Monget, P. (2006). Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J. Endocrinol. 189, 199–209.
Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyqtL0%3D&md5=58adf83fe2303beb79bdd2fdd0f4dd57CAS | 16648288PubMed |

Gregoraszczuk, E. L., Bylica, A., and Gertler, A. (2000). Response of porcine theca and granulosa cells to GH during short-term in vitro culture. Anim. Reprod. Sci. 58, 113–125.
Response of porcine theca and granulosa cells to GH during short-term in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVWrur8%3D&md5=4c58ea702c53e2a6fe89e8bd984ed966CAS | 10700649PubMed |

Hara, S., Takahashi, T., Amita, M., Igarashi, H., Tsutsumi, S., and Kurachi, H. (2011). Bezafibrate restores the inhibition of FSH-induced follicular development and steroidogenesis by tumor necrosis factor-alpha through peroxisome proliferator-activated receptor-gamma pathway in an in vitro mouse preantral follicle culture. Biol. Reprod. 85, 895–906.
Bezafibrate restores the inhibition of FSH-induced follicular development and steroidogenesis by tumor necrosis factor-alpha through peroxisome proliferator-activated receptor-gamma pathway in an in vitro mouse preantral follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2is7bM&md5=d09533bd8511f8e0f1d6dfe094d18b20CAS | 21734263PubMed |

Hartman, H. B., Hu, X., Tyler, K. X., Dalal, C. K., and Lazar, M. A. (2002). Mechanisms regulating adipocyte expression of resistin. J. Biol. Chem. 277, 19 754–19 761.
Mechanisms regulating adipocyte expression of resistin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVWksL4%3D&md5=056af424306e6178bc171f77b09fb239CAS |

Jones, A. M., Rodgers, J., Antibus, D., Knoop, A., Bruot, B., and Marcinkiewicz, J. (2009). Relative ovarian resistin expression in normal cycling rats and rats with cystic ovaries. Biol. Reprod. 81, 532.

Jung, H. S., Park, K. H., Cho, Y. M., Chung, S. S., Cho, H. J., Cho, S. Y., Kim, S. J., Kim, S. Y., Lee, H. K., and Park, K. S. (2006). Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc. Res. 69, 76–85.
Resistin is secreted from macrophages in atheromas and promotes atherosclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlGisb3E&md5=0598d12c8d5b9b4051b05c3e85d91498CAS | 16271710PubMed |

Kiezun, M., Maleszka, A., Smolinska, N., Nitkiewicz, A., and Kaminski, T. (2013). Expression of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine pituitary during the oestrous cycle. Reprod. Biol. Endocrinol. 11, 18.
Expression of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine pituitary during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Wnsrg%3D&md5=94b5d73fe1571fc06245ba1436414810CAS | 23497348PubMed |

Komar, C. M. (2005). Peroxisome proliferator-activated receptors (PPARs) and ovarian function: implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod. Biol. Endocrinol. 3, 41.
Peroxisome proliferator-activated receptors (PPARs) and ovarian function: implications for regulating steroidogenesis, differentiation, and tissue remodeling.Crossref | GoogleScholarGoogle Scholar | 16131403PubMed |

Komar, C. M., and Curry, T. E. (2002). Localization and expression of messenger RNAs for the peroxisome proliferator-activated receptors in ovarian tissue from naturally cycling and pseudopregnant rats. Biol. Reprod. 66, 1531–1539.
Localization and expression of messenger RNAs for the peroxisome proliferator-activated receptors in ovarian tissue from naturally cycling and pseudopregnant rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWnsLo%3D&md5=1ef16f0d80c3fc43f93f112b8a16d3c0CAS | 11967220PubMed |

Komar, C. M., and Curry, T. E. (2003). Inverse relationship between the expression of messenger ribonucleic acid for peroxisome proliferator-activated receptor γ and P450 side chain cleavage in the rat ovary. Biol. Reprod. 69, 549–555.
Inverse relationship between the expression of messenger ribonucleic acid for peroxisome proliferator-activated receptor γ and P450 side chain cleavage in the rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVerurw%3D&md5=f8afb4952078e093b73a85a2c92c4ae3CAS | 12700202PubMed |

Komar, C. M., Braissant, O., Wahli, W., and Curry, T. E. (2001). Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology 142, 4831–4838.
Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqurs%3D&md5=ddcc8b46b1be07d40a3cfe3a316783abCAS | 11606451PubMed |

Lappas, M., Yee, K., Permezel, M., and Rice, G. E. (2005). Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol. 186, 457–465.
Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygt7zM&md5=3feb478b2f6df1fdce52794fdd6f2193CAS | 16135665PubMed |

Larsen, T. M., Toubro, S., and Astrup, A. (2003). PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int. J. Obes. Relat. Metab. Disord. 27, 147–161.
| 1:CAS:528:DC%2BD3sXhtFGhsrc%3D&md5=471bc23e022890b78e1d31bcef9bbad5CAS | 12586994PubMed |

Leesnitzer, L. M., Parks, D. J., Bledsoe, R. K., Cobb, J. E., Collins, J. L., Consler, T. G., Davis, R. G., Hull-Ryde, E. A., Lenhard, J. M., Patel, L., Plunket, K. D., Shenk, J. L., Stimmel, J. B., Therapontos, C., Willson, T. M., and Blanchard, S. G. (2002). Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41, 6640–6650.
Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtF2htLo%3D&md5=1291e5b27ac7fdaed33146c8fd35e32eCAS | 12022867PubMed |

Löhrke, B., Viergutz, T., Shahi, S. K., Pöhland, R., Wollenhaupt, K., Goldammer, T., Walzel, H., and Kanitz, W. (1998). Detection and functional characterisation of the transcription factor peroxisome proliferator-activated receptor gamma in lutein cells. J. Endocrinol. 159, 429–439.
Detection and functional characterisation of the transcription factor peroxisome proliferator-activated receptor gamma in lutein cells.Crossref | GoogleScholarGoogle Scholar | 9834460PubMed |

Long, M. J., Sairam, M. R., and Komar, C. M. (2009). Initiation of the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) in the rat ovary and the role of FSH. Reprod. Biol. Endocrinol. 7, 145.
Initiation of the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) in the rat ovary and the role of FSH.Crossref | GoogleScholarGoogle Scholar | 19968884PubMed |

Maillard, V., Froment, P., Ramé, C., Uzbekova, S., Elis, S., and Dupont, J. (2011). Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation. Reproduction 141, 467–479.
Expression and effect of resistin on bovine and rat granulosa cell steroidogenesis and proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlKiur8%3D&md5=215de35ffe94bb4d97870ac56c30eca2CAS | 21239528PubMed |

Majuri, A., Santaniemi, M., Rautio, K., Kunnari, A., Vartiainen, J., Ruokonen, A., Kesäniemi, Y. A., Tapanainen, J. S., Ukkola, O., and Morin-Papunen, L. (2007). Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: a randomized placebo-controlled study. Eur. J. Endocrinol. 156, 263–269.
Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: a randomized placebo-controlled study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntl2jsr0%3D&md5=88a2f594875c09d6684854caff5d4d83CAS | 17287417PubMed |

Minge, C. E., Bennett, B. D., Norman, R. J., and Robker, R. L. (2008). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149, 2646–2656.
Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gmsb%2FO&md5=a66577a16a305b6b3a6670035a023807CAS | 18276752PubMed |

Minn, A. H., Patterson, N. B., Pack, S., Hoffmann, S. C., Gavrilova, O., Vinson, C., Harlan, D. M., and Shalev, A. (2003). Resistin is expressed in pancreatic islets. Biochem. Biophys. Res. Commun. 310, 641–645.
Resistin is expressed in pancreatic islets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Krsb8%3D&md5=ddf1f9f51cfc91c82a3eb1069a2e8339CAS | 14521959PubMed |

Munir, I., Yen, H. W., Baruth, T., Tarkowski, R., Azziz, R., Magoffin, D. A., and Jakimiuk, A. J. (2005). Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: relevance to polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 90, 4852–4857.
Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: relevance to polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWks7Y%3D&md5=ed33bbe108ba03bf4ad8f613219d1390CAS | 15886251PubMed |

Niles, L. P., Lobb, D. K., Kang, N. H., and Armstrong, K. J. (2012). Resistin expression in human granulosa cells. Endocrine 42, 742–745.
Resistin expression in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlajsro%3D&md5=335cb700d366b35a45407b90d14d0baaCAS | 22744380PubMed |

Nogueiras, R., Gallego, R., Gualillo, O., Caminos, J. E., García-Caballero, T., Casanueva, F. F., and Diéguez, C. (2003). Resistin is expressed in different rat tissues and is regulated in a tissue- and gender-specific manner. FEBS Lett. 548, 21–27.
Resistin is expressed in different rat tissues and is regulated in a tissue- and gender-specific manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Ontrs%3D&md5=10dcd2a975388c06869dc97ecc526ba4CAS | 12885401PubMed |

Nogueiras, R., Barreiro, M. L., Caminos, J. E., Gaytán, F., Suominen, J. S., Navarro, V. M., Casanueva, F. F., Aguilar, E., Toppari, J., Diéguez, C., and Tena-Sempere, M. (2004). Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors. J. Cell Sci. 117, 3247–3257.
Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1ensL8%3D&md5=74f95ae5d3f76a2378bfd2387c8724b2CAS | 15226398PubMed |

Patel, L., Buckels, A. C., Kinghorn, I. J., Murdock, P. R., Holbrook, J. D., Plumpton, C., Macphee, C. H., and Smith, S. A. (2003). Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem. Biophys. Res. Commun. 300, 472–476.
Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpslajs7w%3D&md5=5614cbc81fbe78ae7fe86f19f07584efCAS | 12504108PubMed |

Rak-Mardyła, A., and Karpeta, A. (2014). Rosiglitazone stimulates peroxisome proliferator activated receptor gamma (PPARγ) expression and directly modulates in vitro steroid secretion in porcine ovarian follicles. Theriogenology 82, 1–9.
Rosiglitazone stimulates peroxisome proliferator activated receptor gamma (PPARγ) expression and directly modulates in vitro steroid secretion in porcine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 24681211PubMed |

Rak-Mardyła, A., Durak, M., and Gregoraszczuk, E. Ł. (2013). Effects of resistin on porcine ovarian follicle steroidogenesis in prepubertal animals: an in vitro study. Reprod. Biol. Endocrinol. 11, 45.
Effects of resistin on porcine ovarian follicle steroidogenesis in prepubertal animals: an in vitro study.Crossref | GoogleScholarGoogle Scholar | 23680257PubMed |

Rak-Mardyła, A., Duda, M., and Gregoraszczuk, E. L. (2014). A role for resistin in the ovary during the estrous cycle. Horm. Metab. Res. 46, 493–498.
A role for resistin in the ovary during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 24627104PubMed |

Rao, J. R., Keating, D. J., Chen, C., and Parkington, H. C. (2012). Adiponectin increases insulin content and cell proliferation in MIN6 cells via PPARγ-dependent and PPARγ-independent mechanisms. Diabetes Obes. Metab. 14, 983–989.
Adiponectin increases insulin content and cell proliferation in MIN6 cells via PPARγ-dependent and PPARγ-independent mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCgur7L&md5=f0fe2d4cb38780c8e8ec24b6bb22d14fCAS | 22594400PubMed |

Reverchon, M., Cornuau, M., Ramé, C., Guerif, F., Royère, D., and Dupont, J. (2013). Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells. Fertil. Steril. 100, 247–255.
Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVynsLY%3D&md5=6e5fdbf3e71e0dd57a207dbe45e50a60CAS | 23548939PubMed |

Sánchez-Solana, B., Laborda, J., and Baladrón, V. (2012). Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor. Mol. Endocrinol. 26, 110–127.
Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor.Crossref | GoogleScholarGoogle Scholar | 22074948PubMed |

Sato, H., Sugai, H., Kurosaki, H., Ishikawa, M., Funaki, A., Kimura, Y., and Ueno, K. (2013). The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes. Biol. Pharm. Bull. 36, 564–573.
The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos1Khsbo%3D&md5=6ae1dc6da9a306572c0d9495e0edef72CAS | 23546292PubMed |

Schoppee, P. D., Garmey, J. C., and Veldhuis, J. D. (2002). Putative activation of the peroxisome proliferator-activated receptor gamma impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol. Reprod. 66, 190–198.
Putative activation of the peroxisome proliferator-activated receptor gamma impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yrsQ%3D%3D&md5=d99f4ba7dd6be4cb452b04019137ef44CAS | 11751282PubMed |

Seto-Young, D., Avtanski, D., Strizhevsky, M., Parikh, G., Patel, P., Kaplun, J., Holcomb, K., Rosenwaks, Z., and Poretsky, L. (2007). Interactions among peroxisome proliferator activated receptor-gamma, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells. J. Clin. Endocrinol. Metab. 92, 2232–2239.
Interactions among peroxisome proliferator activated receptor-gamma, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslOgs74%3D&md5=339d6daf1dd806fa97c251d294a771d3CAS | 17374711PubMed |

Sharma, I., Monga, R., Singh, N., Datta, T. K., and Singh, D. (2012). Ovary-specific novel peroxisome proliferator activated receptors-gamma transcripts in buffalo. Gene 504, 245–252.
Ovary-specific novel peroxisome proliferator activated receptors-gamma transcripts in buffalo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12ksLo%3D&md5=871a3f880e0c061b9fd1cea9fdf87354CAS | 22609729PubMed |

Shojima, N., Sakoda, H., Ogihara, T., Fujishiro, M., Katagiri, H., Anai, M., Onishi, Y., Ono, H., Inukai, K., Abe, M., Fukushima, Y., Kikuchi, M., Oka, Y., and Asano, T. (2002). Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes 51, 1737–1744.
Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlSkt7s%3D&md5=8d6e7811f5eed7f20a16a9c3165b873fCAS | 12031960PubMed |

Singh, A. K., Battu, A., Mohareer, K., Hasnain, S. E., and Ehtesham, N. Z. (2010). Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARγ). PLoS ONE 5, e9912.
Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARγ).Crossref | GoogleScholarGoogle Scholar | 20360975PubMed |

Song, H., Shojima, N., Sakoda, H., Ogihara, T., Fujishiro, M., Katagiri, H., Anai, M., Onishi, Y., Ono, H., and Inukai, K. (2002). Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem. Biophys. Res. Commun. 299, 291–298.
Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Witbg%3D&md5=7a90d1b3ea4507d633301f76c6b8d005CAS | 12437985PubMed |

Spicer, L. J., Schreiber, N. B., Lagaly, D. V., Aad, P. Y., Douthit, L. B., and Grado-Ahuir, J. A. (2011). Effect of resistin on granulosa and theca cell function in cattle. Anim. Reprod. Sci. 124, 19–27.
Effect of resistin on granulosa and theca cell function in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVyjsrs%3D&md5=467c4c684c234255bc5517859096064aCAS | 21315524PubMed |

Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S., and Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature 409, 307–312.
The hormone resistin links obesity to diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms12nsA%3D%3D&md5=138b2c522e5f2d81616628f634debde0CAS | 11201732PubMed |

Sundvold, H., Brzozowska, A., and Lien, S. (1997). Characterisation of bovine peroxisome proliferator-activated receptors gamma 1 and gamma 2: genetic mapping and differential expression of the two isoforms. Biochem. Biophys. Res. Commun. 239, 857–861.
Characterisation of bovine peroxisome proliferator-activated receptors gamma 1 and gamma 2: genetic mapping and differential expression of the two isoforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVKqtL8%3D&md5=9a01101f0a32713548a48c79627abef8CAS | 9367859PubMed |

Tsukamoto, H. (2005). Adipogenic phenotype of hepatic stellate cells. Alcohol Clin. Exp. Res. 29, 132S–133S.
Adipogenic phenotype of hepatic stellate cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlShsbfP&md5=924a6889e27d93fb9fe6c48eb1722d79CAS | 16344597PubMed |

Ukkola, O. (2002). Resistin: a mediator of obesity-associated insulin resistance or an innocent bystander? Eur. J. Endocrinol. 147, 571–574.
Resistin: a mediator of obesity-associated insulin resistance or an innocent bystander?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVahu7Y%3D&md5=b3de2b3ee063779d3abd2636851373edCAS | 12444887PubMed |

Wang, Y. X., Zhu, W. J., and Xie, B. G. (2014). Expression of PPAR-γ in adipose tissue of rats with polycystic ovary syndrome induced by DHEA. Mol. Med. Rep. 9, 889–893.
| 1:CAS:528:DC%2BC2cXktFekurk%3D&md5=caf118b81afd1d0bbf49b5e8da730bd6CAS | 24425206PubMed |

Wood, J. R., Dumesic, D. A., Abbott, D. H., and Strauss, J. F. (2007). Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J. Clin. Endocrinol. Metab. 92, 705–713.
Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVakt7c%3D&md5=778eb7c882fe9b728b6dee7e9729c860CAS | 17148555PubMed |

Yang, R. Z., Huang, Q., Xu, A., McLenithan, J. C., Eisen, J. A., Shuldiner, A. R., Alkan, S., and Gong, D. W. (2003). Comparative studies of resistin expression and phylogenomics in human and mouse. Biochem. Biophys. Res. Commun. 310, 927–935.
Comparative studies of resistin expression and phylogenomics in human and mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVylurg%3D&md5=405d4411fe9d068e6f9a3a67d5fa455cCAS | 14550293PubMed |

Ye, H., Zhang, H. J., Xu, A., and Hoo, R. L. (2013). Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone. PLoS ONE 8, e65543.
Resistin production from adipose tissue is decreased in db/db obese mice, and is reversed by rosiglitazone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVejsb7F&md5=57354223d9205cbd1a92fa7b11ebec85CAS | 23776497PubMed |

Zhou, L., Xia, T., Li, Y., Chen, X., Peng, Y., and Yang, Z. (2006). Transcriptional regulation of the resistin gene. Domest. Anim. Endocrinol. 30, 98–107.
Transcriptional regulation of the resistin gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVelsw%3D%3D&md5=3d2abd1c78f1d2ee227164e58f375027CAS | 16076545PubMed |