Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Impacts of and interactions between environmental stress and epigenetic programming during early embryo development

Michael J. Bertoldo A F , Yann Locatelli A B C D , Christopher O’Neill E and Pascal Mermillod A C D
+ Author Affiliations
- Author Affiliations

A Institut National de la Recherche Agronomique (INRA), UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.

B Muséum National d’Histoire Naturelle (MNHN), Laboratoire de la Réserve de la Haute Touche, 36290, Obterre, France.

C Centre National de la Recherche Scientifique (CNRS), UMR7247, F-37380 Nouzilly, France.

D Université François Rabelais de Tours, F-37041 Tours, France.

E Centre for Developmental and Regenerative Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, NSW 2065, Australia.

F Corresponding author. Email: michael1984@hotmail.fr

Reproduction, Fertility and Development 27(8) 1125-1136 https://doi.org/10.1071/RD14049
Submitted: 11 February 2014  Accepted: 31 March 2014   Published: 26 June 2014

Abstract

The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.

Additional keywords: apoptosis, assisted reproductive technologies, cAMP response element-binding protein, embryotrophins, oocyte quality, phosphatidylinositol 3-kinase.


References

Bagg, M. A., Nottle, M. B., Armstrong, D. T., and Grupen, C. G. (2007). Relationship between follicle size and oocyte developmental competence in prepubertal and adult oocytes. Reprod. Fertil. Dev. 19, 797–803.
Relationship between follicle size and oocyte developmental competence in prepubertal and adult oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzN&md5=2b788f96fba86cf4ceab3a9a58ddd9afCAS | 17897582PubMed |

Bakos, H. W., Henshaw, R. C., Mitchell, M., and Lane, M. (2011). Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil. Steril. 95, 1700–1704.
Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 21145051PubMed |

Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A., and Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938–941.
Fetal nutrition and cardiovascular disease in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3htFaisQ%3D%3D&md5=920ac0e07123a65500777be5127b7994CAS |

Bártová, E., Krejčí, J., Harničarová, A., Galiová, G., and Kozubek, S. (2008). Histone modifications and nuclear architecture: a review. J. Histochem. Cytochem. 56, 711–721.
Histone modifications and nuclear architecture: a review.Crossref | GoogleScholarGoogle Scholar | 18474937PubMed |

Beilby, K. H., de Graaf, S. P., Evans, G., Maxwell, W. M. C., Wilkening, S., Wrenzycki, C., and Grupen, C. G. (2011). Quantitative mRNA expression in ovine blastocysts produced from X- and Y-chromosome bearing sperm, both in vitro and in vivo. Theriogenology 76, 471–481.
Quantitative mRNA expression in ovine blastocysts produced from X- and Y-chromosome bearing sperm, both in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFWhtLs%3D&md5=823914c0c516a33348f2e3ae6cde8745CAS | 21497386PubMed |

Benoff, S., and Hurley, I. R. (2001). Epigenetic and experimental modifications in early mammalian development: part I. Preface. Hum. Reprod. Update 7, 211–216.
Epigenetic and experimental modifications in early mammalian development: part I. Preface.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvgvFanug%3D%3D&md5=ad26d01d04e1fbc578dd8140b96d0cb0CAS | 11284663PubMed |

Bertoldo, M., Holyaoke, P. K., Evans, G., and Grupen, C. G. (2010). Oocyte developmental competence is reduced in sows during the seasonal infertility period. Reprod. Fertil. Dev. 22, 1222–1229.
Oocyte developmental competence is reduced in sows during the seasonal infertility period.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cfms12lsg%3D%3D&md5=98e3786b070b90fbc89a8d1de26b1635CAS | 20883647PubMed |

Bi, Y., Zhou, L., Wang, Y., Hai, T., Huo, R., Zhou, Z., Zhou, Q., and Sha, J. (2011). WDR82, a key epigenetic-related factor, plays a crucial role in normal early embryonic development in mice. Biol. Reprod. 84, 756–764.
WDR82, a key epigenetic-related factor, plays a crucial role in normal early embryonic development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFanu70%3D&md5=666037d1900ebb2a1eb8631fe8cda98fCAS | 21123813PubMed |

Bleckmann, S. C., Blendy, J. A., Rudolph, D., Monaghan, A. P., Schmid, W., and Schültz, G. (2002). Activating transcription factor 1 and CREB are imprtant for cell survival during early mouse development. Mol. Cell. Biol. 22, 1919–1925.
Activating transcription factor 1 and CREB are imprtant for cell survival during early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVWjur4%3D&md5=c5968a390fbdd93df777065e010a9e6fCAS | 11865068PubMed |

Bowdin, S., Allen, C., Kirby, G., Brueton, L., Afnan, M., Barratt, C., Kirkman-Brown, J., Harrison, R., Maher, E. R., and Reardon, W. (2007). A survey of assisted reproductive technology births and imprinting disorders. Hum. Reprod. 22, 3237–3240.
A survey of assisted reproductive technology births and imprinting disorders.Crossref | GoogleScholarGoogle Scholar | 17921133PubMed |

Bowman, P., and McLaren, A. (1970). Viability and growth of mouse embryos after in vitro culture and fusion. J. Embryol. Exp. Morphol. 23, 693–704.
| 1:STN:280:DyaE3M%2Fhtlemsw%3D%3D&md5=892a95d3a7f8071665d3105d4ef4e459CAS | 5473306PubMed |

Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Avarez, P., Ramirez, M. A., and Gutierrez-Adan, A. (2012a). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 77, 785–793.
Long-term and transgenerational effects of in vitro culture on mouse embryos.Crossref | GoogleScholarGoogle Scholar | 21855990PubMed |

Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., and Gutierrez-Adan, A. (2012b). Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol. Reprod. 87, 34.
Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring.Crossref | GoogleScholarGoogle Scholar | 22649070PubMed |

Chandrakanthan, V., Li, A., Chami, O., and O’Neill, C. (2006). Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos. Reprod. Biol. Endocrinol. 4, 61.
Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos.Crossref | GoogleScholarGoogle Scholar | 17118206PubMed |

Chandrakanthan, V., Chami, O., Stojanov, T., and O’Neill, C. (2007). Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts. Reprod. Biol. Endocrinol. 5, 39.
Variable expressivity of the tumour suppressor protein TRP53 in cryopreserved human blastocysts.Crossref | GoogleScholarGoogle Scholar | 17939878PubMed |

Chi, M. M., Pingsterhaus, J., Caryannopoulos, M., and Moley, K. H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem. 275, 40 252–40 257.
Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFelsw%3D%3D&md5=07eb7d1327c114bc4586e95756a97463CAS |

Chu, T., Dufort, I., and Sirard, M.-A. (2012). Effect of ovarian stimulation on oocyte gene expression in cattle. Theriogenology 77, 1928–1938.
Effect of ovarian stimulation on oocyte gene expression in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksFensrc%3D&md5=9a0db2e43c067fd25a91e33e5828cf4dCAS | 22444561PubMed |

Corcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., Coussens, P. M., Ireland, J. J., Boland, M. P., Evans, A. C., and Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine oocytes. Reproduction 131, 651–660.
Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtr8%3D&md5=7215c2afe3694c258ec1b6c81c3fbe8dCAS | 16595716PubMed |

Curhan, G. C., Chertow, G. M., Willett, W. C., Spiegelman, D., Colditz, G. A., Manson, J. E., Speizer, F. E., and Stampfer, M. J. (1996). Birth weight and adult hypertension and obesity in women. Circulation 94, 1310–1315.
Birth weight and adult hypertension and obesity in women.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vitVartA%3D%3D&md5=d860b992b5bc26181d48d3d27fb119a4CAS | 8822985PubMed |

De Rycke, M., Liebaers, I., and Van Steirteghem, A. (2002). Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance. Hum. Reprod. 17, 2487–2494.
Epigenetic risks related to assisted reproductive technologies: risk analysis and epigenetic inheritance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1GgsbY%3D&md5=e2d91c07ecee06b616695e8a219ddf27CAS | 12351517PubMed |

Dieleman, S. J., Hendriksen, P. J. M., Viuff, D., Thomsen, P. D., Hyttel, P., Knijn, H. M., Wrenzycki, C., Kruip, T. A. M., Niemann, H., Gadella, B. M., Bevers, M. M., and Vols, P. L. A. M. (2002). Effect of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57, 5–20.
Effect of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fksl2luw%3D%3D&md5=a46e6cfb349daffd0a73452a54bb4d38CAS | 11775980PubMed |

Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S., and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsrc%3D&md5=10cf0dfb9b21c6ad2164bea69e1b9c9bCAS | 10819752PubMed |

Dolinoy, D. C., Weinhouse, C., Jones, T. R., Rozek, L. S., and Jirtle, R. L. (2010). Variable histone modifcations at the Avy metastable epiallele. Epigenetics 5, 637–644.
Variable histone modifcations at the Avy metastable epiallele.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyrtbfN&md5=ae025521a844f7da81ad7b4b1aee2c24CAS | 20671424PubMed |

Duranthon, V., Watson, A. J., and Lonergan, P. (2008). Preimplantation embryo programming: transcription, epigenetics, and culture environment Reproduction 135, 141–150.
Preimplantation embryo programming: transcription, epigenetics, and culture environmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7Y%3D&md5=b60b9461736d1059699b214bd14afaccCAS | 18239045PubMed |

Ecker, D. J., Stein, P., Xu, Z., Williams, C. J., Kopf, G. S., Bilker, W. B., Abel, T., and Schultz, R. M. (2004). Long-term effects of culture of preimplantation mouse embryos on behaviour. Proc. Natl Acad. Sci. USA 101, 1595–1600.
Long-term effects of culture of preimplantation mouse embryos on behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFaqtrg%3D&md5=2af84fc76efdd44406861fc97f406b50CAS | 14747652PubMed |

el Hajj, N., and Haaf, T. (2013). Epigenetic disturbamces in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.
Epigenetic disturbamces in in vitro cultured gametes and embryos: implications for human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWmsbs%3D&md5=cd51395c76d4c695b8ab0b30986538bcCAS | 23357453PubMed |

Fair, T., Hyttel, P., and Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–442.
Bovine oocyte diameter in relation to maturational competence and transcriptional activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVGisb4%3D&md5=4117e4dc4bc41ae728dd5fd8dff27e27CAS | 8607973PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placenta from in vitro-produced bivine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placenta from in vitro-produced bivine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Fernández-Gonzalez, R., Moreira, P., Bilbao, A., Jiménez, A., Pérez-Crespo, M., Ramírez, M. A., Rodríquez De Fonseca, F., Pintado, B., and Gutiérrez-Adán, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl Acad. Sci. USA 101, 5880–5885.
Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior.Crossref | GoogleScholarGoogle Scholar | 15079084PubMed |

Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., and Gutierrez, C. G. (2010). Histone modifications at the blastocyst Axin1FU locus mark the heritability of in vitro culture-induced epigentic altertions in mice. Biol. Reprod. 83, 720–727.
Histone modifications at the blastocyst Axin1FU locus mark the heritability of in vitro culture-induced epigentic altertions in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls77M&md5=2023b06ebe8b09edec6564bc7c15e851CAS | 20650886PubMed |

Fullston, T., Palmer, N. O., Owens, J. A., Mitchell, M., Bakos, H. W., and Lane, M. (2012). Diet-induced paternal obesity in the abscence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400.
Diet-induced paternal obesity in the abscence of diabetes diminishes the reproductive health of two subsequent generations of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vjvFGhsQ%3D%3D&md5=afdbee3d39e9090db00c640bd3d05213CAS | 22357767PubMed |

Ganeshan, L., Li, A., and O’Neill, C. (2010). Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass. Biol. Reprod. 83, 958–964.
Transformation-related protein 53 expression in the early mouse embryo compromises preimplantation embryonic development by preventing the formation of a proliferating inner cell mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahu77M&md5=d4f92f8c0f0b4ef3e65556af846d3abfCAS | 20739669PubMed |

Gardner, D. K., and Lane, M. (2005). Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17, 361–370.
Ex vivo early embryo development and effects on gene expression and imprinting.Crossref | GoogleScholarGoogle Scholar | 15745644PubMed |

Gillman, M. W. (2005). Developmental origins of health and disease. N. Engl. J. Med. 353, 1848–1850.
Developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKrtb7K&md5=43350c9beff061c91ccd893968986df8CAS | 16251542PubMed |

Grupen, C. G., Boquest, A. C., Ashman, R. J., Armstrong, D. T., and Nottle, M. B. (2003). Relationship between donor animal age, follicular fluid store content and oocyte developmental competence. Reprod. Fertil. Dev. 15, 81–87.
Relationship between donor animal age, follicular fluid store content and oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 12895404PubMed |

Halliday, J., Oke, K., Breheny, S., Algar, E., and Amor, D. J. (2004). Beckwith–Wiedemann syndrome and IVF: a case-control study. Am. J. Hum. Genet. 75, 526–528.
Beckwith–Wiedemann syndrome and IVF: a case-control study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1Wgtbw%3D&md5=bf58c3f8a6ec2e8edc3af79c4f3ea704CAS | 15284956PubMed |

Hansen, M., Bower, C., Milne, E., De Klerk, N., and Kurinczuk, J. (2005). Assisted reproductive technologies and the risk of birth defects: a systematic review. Hum. Reprod. 20, 328–338.
Assisted reproductive technologies and the risk of birth defects: a systematic review.Crossref | GoogleScholarGoogle Scholar | 15567881PubMed |

Hervouet, E., Vallette, F. M., and Cartron, P. (2009). Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4, 487–499.
Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFGju7c%3D&md5=b5b9e1ed7cf12f57da4bd664c9346413CAS | 19786833PubMed |

Ho, Y., Doherty, A. S., and Schultz, R. M. (1994). Mouse primplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol. Reprod. Dev. 38, 131–141.
Mouse primplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhslekug%3D%3D&md5=b9515fd2fc9b89df1d9b953e3410059cCAS | 7521650PubMed |

Ho, Y., Wigglesworth, K., Eppig, J. J., and Schultz, R. M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238.
Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVGqu7w%3D&md5=b964ab5715f98d231e136e992b288635CAS | 7654376PubMed |

Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135.
Suppression of induced pluripotent stem cell generation by the p53-p21 pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ahsbc%3D&md5=cbf655a92bc808b870759d0407978d2cCAS | 19668191PubMed |

Hu, Y. G., Hirasawa, R., Hu, J. L., Hata, K., Li, C. L., Jin, Y., Chen, T., Li, E., Rigolet, M., Viegas-Péquignot, E., Sasaki, H., and Xu, G. L. (2008). Regulation of DNA methylation activity through Dnmt3L promotor methylation by Dnmt3 enzymes in embryonic development. Hum. Mol. Genet. 17, 2654–2664.
Regulation of DNA methylation activity through Dnmt3L promotor methylation by Dnmt3 enzymes in embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFyntb4%3D&md5=6cf56cc523f8ace068bd0bd3a136694aCAS | 18544626PubMed |

Jin, X. L., and O’Neill, C. (2010). The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo. Biol. Reprod. 82, 459–468.
The presence and activation of two essential transcription factors (cAMP response element-binding protein and cAMP-dependent transcription factor ATF1) in the two-cell mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSntr8%3D&md5=6b8ee1c25205689994dffbd7aa726ee9CAS | 19776387PubMed |

Jin, X. L., Chandrakanthan, V., Morgan, H. D., and O’Neill, C. (2009). Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway. Biol. Reprod. 80, 286–294.
Preimplantation embryo development in the mouse requires the latency of TRP53 expression, which is induced by a ligand-activated PI3 kinase/AKT/MDM2-mediated signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitLc%3D&md5=f2dd2d496e86f564a4d555c51a6c487cCAS | 18923161PubMed |

Jousan, F. D., Oliveira, L. J., and Hansen, P. J. (2008). Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol. Reprod. Dev. 75, 681–688.
Short-term culture of in vitro produced bovine preimplantation embryos with insulin-like growth factor-I prevents heat shock-induced apoptosis through activation of the phosphatidylinositol 3-kinase/Akt pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFClu7k%3D&md5=0d52de77f2b3d66044d39f7e3ff69489CAS | 18161856PubMed |

Katsushima, K., and Kondo, Y. (2014). Non-coding RNAs as epigenetic regulator of glioma stem-cell like differentiation. Front. Genet. 5, 14.
Non-coding RNAs as epigenetic regulator of glioma stem-cell like differentiation.Crossref | GoogleScholarGoogle Scholar | 24550934PubMed |

Katz-Jaffe, M. G., Linck, D. W., Schoolcraft, W. B., and Gardner, D. K. (2005). A proteomic analysis of mammalian pre-implantation embryonic development. Reproduction 130, 899–905.
A proteomic analysis of mammalian pre-implantation embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12msg%3D%3D&md5=691070635f4eb4d1fbd46027b73a7aa5CAS | 16322549PubMed |

Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., Wahl, G. M., and Belmonte, J. C. I. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144.
Linking the p53 tumour suppressor pathway to somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ahuro%3D&md5=fd692456d0ba8d0c232f3da25fe044b3CAS | 19668186PubMed |

Khosla, S., Dean, W., Brown, D., Reik, W., and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrc%3D&md5=3be9cb26873f429a5df5134d6489fd8dCAS | 11207209PubMed |

Kind, K. L., Collett, R. A., Harvey, A. J., and Thompson, J. G. (2005). Oxygen-related expression of GLUT-1, GLUT-3 and VEGF in the mouse blastocyst. Mol. Reprod. Dev. 70, 37–44.
Oxygen-related expression of GLUT-1, GLUT-3 and VEGF in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOitrzJ&md5=8211897ef036f5e3d3028c129c903c91CAS | 15515055PubMed |

Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=507536327dda679a0c933f339efc8c39CAS | 9068427PubMed |

Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12guro%3D&md5=6855936982b7900d4e6ce445017cb5a4CAS | 9619560PubMed |

Lane, M., and Gardner, D. K. (2005). Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 17, 371–378.
Understanding cellular disruptions during early embryo development that perturb viability and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12nt7c%3D&md5=d56f43965bef0d07e148265b90735fbbCAS | 15745645PubMed |

Li, A., Chandrakanthan, V., Chami, O., and O’Neill, C. (2007). Culture of zygotes increases p53 expression in B6 mouse embryos, which reduces embryo viability. Biol. Reprod. 76, 362–367.
Culture of zygotes increases p53 expression in B6 mouse embryos, which reduces embryo viability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWhtbc%3D&md5=9c7395801a3482bdb4df4f20f6516ee4CAS | 17093197PubMed |

Li, A., Ganeshan, L., and O’Neill, C. (2012). The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro. Biol. Reprod. 86, 175.
The effect of Trp53 gene-dosage and parent-of-origin of inheritance on mouse gamete and embryo function in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38voslOnsQ%3D%3D&md5=e176a9adedf3341a9574c2baae4fee3aCAS | 22441798PubMed |

Lim, D., Bowdin, S. C., Tee, L., Kirby, G. A., Blair, E., Fryer, A., Lam, W., Oley, C., Cole, T., Brueton, L. A., Reik, W., Macdonald, F., and Maher, E. R. (2009). Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies. Hum. Reprod. 24, 741–747.
Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 19073614PubMed |

Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilisation, and culture in vitro. Mol. Reprod. Dev. 37, 48–53.
Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilisation, and culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ns1Wltw%3D%3D&md5=7e7e8afd39ae7324ebe4f68366840b9dCAS | 8129930PubMed |

Lonergan, P., Rizos, D., Gutierrez-Adan, A., Fair, T., and Boland, M. P. (2003). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod. Domest. Anim. 38, 259–267.
Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3svis1SrsA%3D%3D&md5=ddc9e9109697f739d45f860fe1e26a5aCAS | 12887565PubMed |

Lonergan, P., Pedersen, H. G., Rizos, D., Greve, T., Thomsen, P. D., Fair, T., Evans, A., and Boland, M. P. (2004). Effect of the post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts. Biol. Reprod. 71, 1096–1100.
Effect of the post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7w%3D&md5=baa2e445ce26968b19957009989681feCAS | 15189826PubMed |

Lucifero, D., Chaillet, J. R., and Trasler, J. M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod. Update 10, 3–18.
Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislygsb0%3D&md5=55871b03edff003072fbc2c94531c461CAS | 15005460PubMed |

Ludwig, M., Katalinic, A., Gross, S., Sutcliffe, A., Varon, R., and Horsthemke, B. (2005). Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J. Med. Genet. 42, 289–291.
Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7nslKlug%3D%3D&md5=4c1e2f2d4c4f8c60504856e28eef50daCAS | 15805153PubMed |

Maher, E. R., Afnan, M., and Barratt, C. L. (2003). Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum. Reprod. 18, 2508–2511.
Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs?Crossref | GoogleScholarGoogle Scholar | 14645164PubMed |

Mahsoudi, B., Li, A., and O’Neill, C. (2007). Assessment of the long term and transgenerational consequences of perturbing preimplantation embryo development in mice. Biol. Reprod. 77, 889–896.
Assessment of the long term and transgenerational consequences of perturbing preimplantation embryo development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cnu77K&md5=ce985469e50220e94874eb5e2f1c4874CAS | 17699738PubMed |

Mansouri-Attia, N., Snadra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J.-P. (2009). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl Acad. Sci. USA 106, 5687–5692.
Endometrium as an early sensor of in vitro embryo manipulation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurY%3D&md5=d0b1417d58eb701294e0579ca549548dCAS | 19297625PubMed |

Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, A., and Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.
Effect of follicular size on meiotic and developmental competence of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zhtFykug%3D%3D&md5=f85cf371ecb0b233e6b7a5763e279715CAS | 12054210PubMed |

Marión, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., Fernandez-Captillo, O., Serrano, M., and Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153.
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity.Crossref | GoogleScholarGoogle Scholar | 19668189PubMed |

Market Velker, B. A., Fernandes, A. D., and Mann, M. R. W. (2010). Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol. Reprod. 83, 938–950.
Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfK&md5=57f240259fc5c5ae3bfd9602ce4a7f6dCAS | 20702853PubMed |

Market Velker, B. A., Denomme, M. M., and Mann, M. R. (2012). Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol. Reprod. 86, 1–16.
Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture.Crossref | GoogleScholarGoogle Scholar |

McEwen, K. R., Leitch, H. G., Amouroux, R., and Hajkova, P. (2013). The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem. Soc. Trans. 41, 711–719.
The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotV2qs7c%3D&md5=c43cbac29fd09be8d5fc220644d5ac2eCAS | 23697930PubMed |

Mermillod, P., Oussaid, B., and Cognié, Y. (1999). Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J. Reprod. Fertil. Suppl. 54, 449–460.
| 1:STN:280:DC%2BD3c7lslaltg%3D%3D&md5=c87ef09a50fd364d2e7330f0f2005e07CAS | 10692875PubMed |

Mermillod, P., Dalbiès-Tran, R., Uzbekova, S., Thélie, A., Traverso, J. M., Perreau, C., Papillier, P., and Monget, P. (2008). Factors affecting oocyte quality: who is driving the follicle? Reprod. Domest. Anim. 43, 393–400.
Factors affecting oocyte quality: who is driving the follicle?Crossref | GoogleScholarGoogle Scholar | 18638152PubMed |

Morgan, H. D., Jin, X. L., Li, A., Whitelaw, E., and O’Neill, C. (2008). The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigenetically labile allele, agouti viable yellow, in mice. Biol. Reprod. 79, 618–623.
The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigenetically labile allele, agouti viable yellow, in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbbN&md5=a04a0de11f9d6f2e181065fe4afdbbb7CAS | 18562706PubMed |

Mourot, M., Dufort, I., Gravel, C., Algrainy, O., Dieleman, S., and Sirard, M.-A. (2006). The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol. Reprod. Dev. 73, 1367–1379.
The influence of follicle size, FSH-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksb7K&md5=4d5f8dc64473a57b5a973bd5ab6e99ddCAS | 16894554PubMed |

Mu, X. F., Jin, X. L., Farnham, M. M. J., Li, A., and O’Neill, C. (2011). DNA damage-sensing kinases mediate the mouse 2-cell embryo’s response to genotoxic stress. Biol. Reprod. 85, 524–535.
DNA damage-sensing kinases mediate the mouse 2-cell embryo’s response to genotoxic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gtLvK&md5=13a6705d0bdeef66f71ce65ad25348fdCAS | 21593482PubMed |

Nasr-Esfahani, M. M., and Johnson, M. (1991). The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113, 551–560.
| 1:CAS:528:DyaK38XhvVOqsw%3D%3D&md5=f8d0dc3aa6bb52dddf32054fd135ad19CAS | 1664322PubMed |

Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyqug%3D%3D&md5=a2fd15a99bf42f05fbbdcf46c57644f5CAS | 10735059PubMed |

Niida, H., and Nakanishi, M. (2006). DNA checkpoints in mammals. Mutagenesis 21, 3–9.
DNA checkpoints in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlOnsLY%3D&md5=de1ce7c8eab92e8764dbaa95f6bd0821CAS | 16314342PubMed |

Nowak-Imialek, M., Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Lagutina, I., Lemme, E., Lazzari, G., Galli, C., and Niemann, H. (2008). Messenger RNA expression patterns of histone-associated gens in bovine preimplantation embryos derived from different origns. Mol. Reprod. Dev. 75, 731–743.
Messenger RNA expression patterns of histone-associated gens in bovine preimplantation embryos derived from different origns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhsb4%3D&md5=60d304158e6b8fb0e8c043f75e71df88CAS | 18058811PubMed |

O’Neill, C. (1997). Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol. Reprod. 56, 229–237.
Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7ls1Wqtg%3D%3D&md5=10c83b61651952f189a4d0b64129bd5cCAS | 9002654PubMed |

O’Neill, C. (1998). Autoctorine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro. Biol. Reprod. 58, 1303–1309.
Autoctorine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCrsbg%3D&md5=92e63a23ef01238c71fefcde4b4c8a05CAS | 9603268PubMed |

O’Neill, C. (2005). The role of PAF in embryo physiology. Hum. Reprod. Update 11, 215–228.
The role of PAF in embryo physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFOmt7Y%3D&md5=f56d0aaabafa17120f11a37ffafbefa6CAS | 15790601PubMed |

O’Neill, C., Li, Y., and Jin, X. L. (2012). Survival signaling in the preimplantation embryo. Theriogenology 77, 773–784.
Survival signaling in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGhsLs%3D&md5=c85399aaa0dff648ca6d3fe33bfd9da6CAS | 22325248PubMed |

Pantazis, P., and Bollenbach, T. (2012). Transcription factor kinetics and the emerging asymmetry in the early mammalian embryo. Cell Cycle 11, 2055–2058.
Transcription factor kinetics and the emerging asymmetry in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOhsLjJ&md5=f2eff372728d167038e4f5d814625f28CAS | 22580473PubMed |

Payne, S. R., Munday, R., and Thompson, J. G. (1992). Addition of superoxide dismutase and catalase does not necessarily over-come developmental retardation of one-cell mouse embryos during in-vitro culture. Reprod. Fertil. Dev. 4, 167–174.
Addition of superoxide dismutase and catalase does not necessarily over-come developmental retardation of one-cell mouse embryos during in-vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls12itg%3D%3D&md5=ec0afb98d522edb1bc52ea3353018647CAS | 1438946PubMed |

Rappolee, D. A. (2007). Impact of transient stress and stress enzymes on development. Dev. Biol. 304, 1–8.
Impact of transient stress and stress enzymes on development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Sksbg%3D&md5=98696f008915fc8ee670f6de5ece1effCAS | 17258702PubMed |

Rinaudo, P., and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–311.
Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitLg%3D&md5=364c53eb6c89704c7f610c1ae77d35b7CAS | 15333781PubMed |

Rizos, D., Lonergan, P., Boland, M. P., Arroyo-Garcia, R., Pintado, B., La Fuente, J., and Gutierrez-Adan, A. (2002a). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocsyst quality. Biol. Reprod. 66, 589–595.
Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocsyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitLo%3D&md5=6d662d69be00783220572e98e56ca98dCAS | 11870062PubMed |

Rizos, D., Ward, F., Duffy, P., Boland, M. P., and Lonergan, P. (2002b). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: Implications for blastocyst yield and blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Giug%3D%3D&md5=28e4849408fa350c63f58a4dfa00e4a1CAS | 11803560PubMed |

Romar, R., De Santis, T., Papillier, P., Perreau, C., Thélie, A., Dell’Aquila, M. E., Mermillod, P., and Dalbiès-Tran, R. (2011). Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 46, e23–e30.
Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlOhuw%3D%3D&md5=bb7cac05fd27cbcab18a1a550ee6b4e7CAS | 20403124PubMed |

Rossignol, S., Stenou, V., Chalas, C., Kerjean, A., Rigolet, M., Viegas-Pequignot, E., Jouannet, P., Le Bouc, Y., and Gicquel, C. (2006). The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J. Med. Genet. 43, 902–907.
The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOgsbY%3D&md5=a2265607993f81011b84cc2bdd872861CAS | 16825435PubMed |

Ruthenburg, A. J., Aliis, C. D., and Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25, 15–30.
Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSntbk%3D&md5=823f10d382941243c5c80fc8d678d3a8CAS | 17218268PubMed |

Schieve, L. A., Meikle, S. F., Ferre, C., Peterson, H. B., Jeng, G., and Wilcox, L. S. (2002). Low and very low birth weights in infants conceived with the use of assisted reproductive technology. N. Engl. J. Med. 346, 731–737.
Low and very low birth weights in infants conceived with the use of assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 11882728PubMed |

Shock, L. S., Thakkar, P. V., Peterson, E. J., Moran, R. G., and Taylor, S. M. (2011). DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochindria. Proc. Natl Acad. Sci. USA 108, 3630–3635.
DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochindria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKrsrw%3D&md5=4d8cd604b9d16020979586710c3f234bCAS | 21321201PubMed |

Sirard, M.-A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisr0%3D&md5=af69bd3e8ac35c943a57db73f22d1f02CAS | 11327682PubMed |

Souza-Fabjan, J. M. G., Locatelli, Y., Duffard, N., Corbine, E., Touzé, J.-L., Perreau, C., Beckers, J. F., Freias, V. J. F., and Mermillod, P. (2014). In vitro embryo production in goats: slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media. Theriogenology 81, 1021–1031.
In vitro embryo production in goats: slaughterhouse and laparoscopic ovum pick up-derived oocytes have different kinetics and requirements regarding maturation media.Crossref | GoogleScholarGoogle Scholar |

Stojanov, T., and O’Neill, C. (2001). In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice. Biol. Reprod. 64, 696–705.
In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOnsw%3D%3D&md5=e5e5d23c8ee6a748a47ec6c4b494254bCAS | 11159375PubMed |

Summers, M. C., and Biggers, J. D. (2003). Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum. Reprod. Update 9, 557–582.
Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSiurc%3D&md5=0e1f2102cf9d46df59934bda692b6f08CAS | 14714592PubMed |

Sutcliffe, A. G., and Ludwig, M. (2007). Outcome of assisted reproduction. Lancet 370, 351–359.
Outcome of assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 17662884PubMed |

Szutorisz, H., and Dillon, N. (2005). The epigenetic basis for embryonic stem cell pluripotency. BioEssays 27, 1286–1293.
The epigenetic basis for embryonic stem cell pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCjtr7E&md5=4efa905f8d7c286d35e937ab9c231b36CAS | 16299767PubMed |

Thompson, J. G., Mitchell, M., and Kind, K. L. (2007). Embryo culture and long-term consequences. Reprod. Fertil. Dev. 19, 43–52.
Embryo culture and long-term consequences.Crossref | GoogleScholarGoogle Scholar | 17389134PubMed |

Vassena, R., Dee Schramm, R., and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 72, 430–436.
Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmurvF&md5=feee8552942c01a0ef0e309f1e1aeb50CAS | 16155959PubMed |

Vigneault, C., McGraw, S., Massicotte, L., and Sirard, M.-A. (2004). Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal–zygotic transition. Biol. Reprod. 70, 1701–1709.
Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal–zygotic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOmt74%3D&md5=a43aed41124ea209da59d11c540fa642CAS | 14960490PubMed |

Watkins, A. J., Platt, D., Papenbrock, T., Wilkins, A., Eckert, J. J., Kwong, W. Y., Osmond, C., Hanson, M., and Fleming, T. P. (2007). Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc. Natl Acad. Sci. USA 104, 5449–5454.
Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1emt78%3D&md5=44567a0206fbce9a2032f7cef68aa6bbCAS | 17372207PubMed |

Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., Anazawa, S., Barrett-Connor, E., Bhargava, S. K., Birgisdottir, B. E., Carlsson, S., de Rooij, S. R., Dyck, R. F., Eriksson, J. G., Falkner, B., Fall, C., Forsén, T., Grill, V., Gudnason, V., Hulman, S., Hyppönen, E., Jeffreys, M., Lawlor, D. A., Leon, D. A., Minami, J., Mishra, G., Osmond, C., Power, C., Rich-Edwards, J. W., Roseboom, T. J., Sachdev, H. S., Syddall, H., Thorsdottir, I., Vanhala, M., Wadsworth, M., and Yarbrough, D. E. (2008). Birth weight and risk of Type 2 diabetes: a systematic review. JAMA 300, 2886–2897.
Birth weight and risk of Type 2 diabetes: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGiuw%3D%3D&md5=f18c54a470e33458cc50add6f470c3a3CAS | 19109117PubMed |

Whitten, W. K., and Biggers, J. D. (1968). Complete development in-vitro of the preimplantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399–401.
Complete development in-vitro of the preimplantation stages of the mouse in a simple chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M%2FlsFagug%3D%3D&md5=0de9e1e3eb8775f7ce3a7faafdf87e30CAS | 5749384PubMed |

Wisborg, K., Ingerslev, H. J., and Henriksen, T. B. (2010). In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study. Fertil. Steril. 94, 2102–2106.
In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study.Crossref | GoogleScholarGoogle Scholar | 20188361PubMed |

Wrenzycki, C., Herrman, D., Carnwarth, J. W., and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplatation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
Alterations in the relative abundance of gene transcripts in preimplatation bovine embryos cultured in medium supplemented with either serum or PVA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitleju7s%3D&md5=088f53650647bc839d3d22d5cca4b3d3CAS | 10230812PubMed |

Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A., Sirisathien, S., Brackett, B., and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Cqs74%3D&md5=8388e2dd53395214bd5f850b1fb0c902CAS | 11331635PubMed |

Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Korsawe, K., Lemme, E., and Niemann, H. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 17, 23–35.
Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurbL&md5=74b2fd5186d6a18e2b80cf72edd970e2CAS | 15745629PubMed |

Xie, Y., Pusecheck, E. E., and Rappolee, D. A. (2006). Effects of SAPK/JNK inhibitors on preimplantation mouse embryo development are influenced greatly by the amount of stress induced by the media. Mol. Hum. Reprod. 12, 217–224.
Effects of SAPK/JNK inhibitors on preimplantation mouse embryo development are influenced greatly by the amount of stress induced by the media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1SlsL0%3D&md5=9d620ea8640186ad110030b05681bbdeCAS | 16574700PubMed |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=786b15da787172bc7519c08d2e03b7b5CAS | 9829550PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGktL8%3D&md5=806eaa77a997e03260a3274343e362d4CAS | 11175780PubMed |

Zander, D. L., Thompson, J. G., and Lane, M. (2006). Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol. Reprod. 74, 288–294.
Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1KlsA%3D%3D&md5=2c27728b53e5b1c690525204b368468cCAS | 16221986PubMed |

Zheng, W., Gorre, N., Shen, Y., Noda, T., Ogawa, W., Lundin, E., and Liu, K. (2010). Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep. 11, 890–895.
Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GrtbnN&md5=563070717a066e5581bdfde94db2f024CAS | 20930845PubMed |