Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Src family kinases are involved in the meiotic maturation of porcine oocytes

Kateřina Kheilová A C , Jaroslav Petr B , Tereza Žalmanová A , Veronika Kučerová-Chrpová A and Dalibor Řehák B
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol, Czech Republic.

B Institute of Animal Science, Přátelství 815, Prague 10, Uhříněves, Czech Republic.

C Corresponding author. Email: kheilova@af.czu.cz

Reproduction, Fertility and Development 27(7) 1097-1105 https://doi.org/10.1071/RD13352
Submitted: 17 October 2013  Accepted: 18 March 2014   Published: 23 April 2014

Abstract

Mammalian meiotic maturation is regulated by changes in the phosphorylation state of proteins involved in signalling pathways. The regulatory proteins include the family of Src tyrosine kinases. Src family kinases (SFKs) are required for meiotic maturation of mouse oocytes, and it remains to be elucidated whether they play the same role in porcine oocytes. To clarify the role of SFKs in the meiotic maturation of porcine oocytes we used inhibition of SFKs, western blotting and immunolocalisation to determine the presence of SFKs and localisation in the oocytes and assays to determine the activity of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Inhibition of SFKs resulted in the disruption of oocyte maturation and led to a decline in MPF and MAPK activity. The fluorescence intensity of SFKs in the cytoplasm and membrane of MI oocytes decreased significantly compared with germinal vesicle oocytes. The highest fluorescence intensity for SFKs was detected on the membrane of MII oocytes. Only weak fluorescence was detected in the perichromosomal area of MI and MII oocytes. These results prove that SFKs play an active role in the meiotic maturation of porcine oocytes by regulating MPF and MAPK activity.

Additional keywords: meiosis, pig, PP2, SKI-606.


References

Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, K., and Connelly, P. A. (1996). Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor: study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701.
Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor: study of Lck- and FynT-dependent T cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFOjsg%3D%3D&md5=30f4b128654d80737de43856b02f691eCAS | 8557675PubMed |

Hara, M., Abe, Y., Tanaka, T., Yamamoto, T., Okumura, E., and Kishimoto, T. (2012). Greatwall kinase and cyclin B–Cdk1 are both critical constituents of M-phase-promoting factor. Nat. Commun. 3, 1059.
Greatwall kinase and cyclin B–Cdk1 are both critical constituents of M-phase-promoting factor.Crossref | GoogleScholarGoogle Scholar | 22968705PubMed |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
Oocyte maturation and ovum quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu7k%3D&md5=949b173fb745a6b5c3108b852815cb03CAS | 10864857PubMed |

Hunter, M. G., Grant, S. A., and Foxcroft, G. R. (1989). Histological evidence for heterogeneity in the development of preovulatory pig follicles. J. Reprod. Fertil. 86, 165–170.
Histological evidence for heterogeneity in the development of preovulatory pig follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzivVylsg%3D%3D&md5=5e4bfebabc41d4826ea634acccfd9ce6CAS | 2754636PubMed |

Levi, M., Maro, B., and Shalgi, R. (2010a). The involvement of Fyn kinase in resumption of the first meiotic division in mouse oocytes. Cell Cycle 9, 1577–1589.
The involvement of Fyn kinase in resumption of the first meiotic division in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qsL%2FK&md5=6bda4263a4f655b52f713f55091c4facCAS | 20372074PubMed |

Levi, M., Maro, B., and Shalgi, R. (2010b). Fyn kinase is involved in cleavage furrow ingression during meiosis and mitosis. Reproduction 140, 827–834.
Fyn kinase is involved in cleavage furrow ingression during meiosis and mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKqtLc%3D&md5=74617abbe433306f722f461762a7536cCAS | 20841362PubMed |

Levi, M., Kaplan-Kraicer, R., and Shalgi, R. (2011a). Regulation of division in mammalian oocytes: implications for polar body formation. Mol. Hum. Reprod. 17, 328–334.
Regulation of division in mammalian oocytes: implications for polar body formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVyjtbc%3D&md5=6222b955aa274370c8c33921c3921528CAS | 21498869PubMed |

Levi, M., Maro, B., and Shalgi, R. (2011b). The conformation and activation of Fyn kinase in the oocyte determine its localisation to the spindle poles and cleavage furrow. Reprod. Fertil. Dev. 23, 846–857.
The conformation and activation of Fyn kinase in the oocyte determine its localisation to the spindle poles and cleavage furrow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOrtLfL&md5=00e8eb1ccb45c8a526a320f7f1625ccbCAS | 21871204PubMed |

Li, M., Ai, J. S., Xu, B. Z., Xiong, B., Yin, S., Lin, S. L., Hou, Y., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2008). Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes. Biol. Reprod. 79, 897–905.
Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLvO&md5=ae9e4c989f7cd0a9e98dd47e4e747c55CAS | 18667751PubMed |

Luo, J., McGinnis, L. K., and Kinsey, W. H. (2009). Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Mol. Reprod. Dev. 76, 819–831.
Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleht7k%3D&md5=80431a89a73cb42c1bd2aa96a276ef7cCAS | 19363790PubMed |

McGinnis, L. K., Albertini, D. F., and Kinsey, W. H. (2007). Localized activation of Src-family protein kinases in the mouse egg. Dev. Biol. 306, 241–254.
Localized activation of Src-family protein kinases in the mouse egg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2nsbk%3D&md5=90d212263592a0ab899238742b5a38ebCAS | 17449027PubMed |

McGinnis, L. K., Kinsey, W. H., and Albertini, D. F. (2009). Functions of Fyn kinase in the completion of meiosis in mouse oocytes. Dev. Biol. 327, 280–287.
Functions of Fyn kinase in the completion of meiosis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aqsbg%3D&md5=9091484fbd5cfcaffc5c618b0e250467CAS | 19118543PubMed |

Miyano, T., Ebihara, M., Goto, Y., Hirao, Y., Nagai, T., and Kato, S. (1995). Inhibitory action of hypoxanthine on meiotic resumption of denuded pig follicular oocytes in vitro. J. Exp. Zool. 273, 70–75.
Inhibitory action of hypoxanthine on meiotic resumption of denuded pig follicular oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptV2ku7w%3D&md5=4bc4e3f2bd595e4d6e44fda1fb580c63CAS | 7561726PubMed |

Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503–508.
Universal control mechanism regulating onset of M-phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFamtrs%3D&md5=6dc9d3ba9f1ae4915c0a9d90c4223d8dCAS | 2138713PubMed |

Rice, C., and McGaughey, R. W. (1981). Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes. J. Reprod. Fertil. 62, 245–256.
Effect of testosterone and dibutyryl cAMP on the spontaneous maturation of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVSrtL0%3D&md5=186806f150db801cead506543fa924a6CAS | 6262508PubMed |

Roche, S., Fumagalli, S., and Courtneidge, S. A. (1995). Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569.
Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVOgtr4%3D&md5=f3c4ddddcb5e46aa213dd599212a0e41CAS | 7545311PubMed |

SAS (2006). User’s Guide. (SAS Institute Inc.: Cary, NC, USA.)

Statsoft (2009). Electronic statistics textbook. (Statsoft: Tulsa, OK, USA.)

Stein, P. L., Vogel, H., and Soriano, P. (1994). Combined deficiencies of Src, Fyn and Yes tyrosine kinases in mutant mice. Genes Dev. 8, 1999–2007.
Combined deficiencies of Src, Fyn and Yes tyrosine kinases in mutant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Ogtr8%3D&md5=dca17c3025530890b78c9d2798b2ac8aCAS | 7958873PubMed |

Su, Y. Q., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2002). Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 143, 2221–2232.
Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFKjtLY%3D&md5=220c002a7cf26558ed1edae78aecbce5CAS | 12021186PubMed |

Superti-Furga, G. (1995). Regulation of the Src protein tyrosine kinase. FEBS Lett. 369, 62–66.
Regulation of the Src protein tyrosine kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntl2gsLk%3D&md5=30204d9232cac5eb7493227762d80be9CAS | 7641886PubMed |

Talmor, A., Kinsey, W. H., and Shalgi, R. (1998). Expression and immunolocalization of p59c-fyn tyrosine kinase in rat eggs. Dev. Biol. 194, 38–46.
Expression and immunolocalization of p59c-fyn tyrosine kinase in rat eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVKnu7s%3D&md5=cb38f24a1f8fa94d34f4736a0fb762a1CAS | 9473330PubMed |

Talmor-Cohen, A., Tomashov-Matar, R., Eliyahu, E., Shapiro, R., and Shalgi, R. (2004a). Are Src family kinases involved in cell cycle resumption in rat eggs? Reproduction 127, 455–463.
Are Src family kinases involved in cell cycle resumption in rat eggs?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Oltrw%3D&md5=0e28511dbeb78e2af1278ee9228bf949CAS | 15047936PubMed |

Talmor-Cohen, A., Tomashov-Matar, R., Tsai, W. B., Kinsey, W. H., and Shalgi, R. (2004b). Fyn kinase–tubulin interaction during meiosis of rat eggs. Reproduction 128, 387–393.
Fyn kinase–tubulin interaction during meiosis of rat eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjs7c%3D&md5=6222aabdba525b6101b75d4ad4424bbbCAS | 15454633PubMed |

Thomas, S. M., and Brugge, J. S. (1997). Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609.
Cellular functions regulated by Src family kinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFSrsQ%3D%3D&md5=b5387c637f232014c1efc7bcfecd33b6CAS | 9442882PubMed |

Tokmakov, A., Iwasaki, T., Itakura, S., Sato, K.-I., Shirouzu, M., Fukami, Y., and Yokoyama, S. (2005). Regulation of Src kinase activity during Xenopus oocyte maturation. Dev. Biol. 278, 289–300.
Regulation of Src kinase activity during Xenopus oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1KgsQ%3D%3D&md5=ffaaf841e570eb09ee07c989f50bdd4eCAS | 15680350PubMed |

Tomashov-Matar, R., Levi, M., Tchetchik, D., Kaplan-Kraicer, R., and Shalgi, R. (2007). The role of Src family kinases in egg activation. Dev. Biol. 312, 77–89.
The role of Src family kinases in egg activation.Crossref | GoogleScholarGoogle Scholar |

Verlhac, M. H., de Pennart, H., Maro, B., Cobb, M. H., and Clarke, H. J. (1993). MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes. Dev. Biol. 158, 330–340.
MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centers during meiotic maturation of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFCgtL4%3D&md5=458232730193c549b1d778d1f19a883aCAS | 8344454PubMed |

Wassarman, P. M. (1988). The mammalian ovum. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. Neill.) pp. 69–102. (Raven Press: New York.)

Wayne, C. M., Fan, H. Y., Cheng, X., and Richards, J. S. (2007). Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol. Endocrinol. 21, 1940–1957.
Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12rs78%3D&md5=792a73e2fb5e79e1bddb6e85261d63ceCAS | 17536007PubMed |

Zheng, K. G., Meng, X. Q., Yang, Y., Yu, Y. S., Liu, D. C., and Li, Y. L. (2007). Requirement of Src family kinase during meiotic maturation in mouse oocyt. Mol. Reprod. Dev. 74, 125–130.
Requirement of Src family kinase during meiotic maturation in mouse oocyt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsbzL&md5=57454cb769647db11ac261c78743dc34CAS | 16941660PubMed |