Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle

Mohammad Bozlur Rahman A D , Md. Mostofa Kamal A , Tom Rijsselaere A , Leen Vandaele B , Mohammed Shamsuddin C and Ann Van Soom A
+ Author Affiliations
- Author Affiliations

A Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

B Department of Animal Science, Institute for Agricultural and Fisheries Research, Scheldeweg 68, 9090 Melle, Belgium.

C Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.

D Corresponding author. Email: mohammadbozlur.rahman@ugent.be

Reproduction, Fertility and Development 26(8) 1107-1116 https://doi.org/10.1071/RD13218
Submitted: 11 July 2013  Accepted: 7 August 2013   Published: 17 September 2013

Abstract

Shortly after penetration of the oocyte, sperm DNA is actively demethylated, which is required for totipotent zygotic development. Aberrant DNA methylation is thought to be associated with altered chromatin condensation of spermatozoa. The objectives of this study were to investigate the dynamics of DNA methylation reprogramming in the paternal pronucleus and subsequent fertilisation potential of heat-stressed bull spermatozoa having altered chromatin condensation. Hence, bovine zygotes (n = 1239) were collected at three different time points (12, 18 and 24 h post insemination, hpi), and stained with an antibody against 5-methylcytosine. Fluorescence intensities of paternal and maternal pronuclei were measured by ImageJ. DNA methylation patterns in paternal pronuclei derived from heat-stressed spermatozoa did not differ between time points (P > 0.05), whereas control zygotes clearly showed demethylation and de novo methylation at 18 and 24 hpi, respectively. Moreover, heat-stressed spermatozoa showed a highly reduced (P < 0.01) fertilisation rate compared with non-heat-stressed or normal control spermatozoa (53.7% vs 70.2% or 81.5%, respectively). Our data show that the normal pattern of active DNA demethylation followed by de novo methylation in the paternal pronucleus is perturbed when oocytes are fertilised with heat-stressed spermatozoa, which may be responsible for decreased fertilisation potential.

Additional keywords: demethylation, de novo methylation, fluorescence intensity, maternal pronucleus, paternal pronucleus.


References

Anway, M. D., and Skinner, M. K. (2008). Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod. Biomed. Online 16, 23–25.
Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease.Crossref | GoogleScholarGoogle Scholar | 18252044PubMed |

Ariel, M., Cedar, H., and McCarrey, J. (1994). Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat. Genet. 7, 59–63.
Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFWitrY%3D&md5=508764882304554d17278981a6717807CAS | 8075642PubMed |

Balhorn, R. (2007). The protamine family of sperm nuclear proteins. Genome Biol. 8, 227.
The protamine family of sperm nuclear proteins.Crossref | GoogleScholarGoogle Scholar | 17903313PubMed |

Beaujean, N., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004a). Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol. Reprod. 71, 185–193.
Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKkur0%3D&md5=e32a86ca6974c41a5b6e5552defbeae6CAS | 14998909PubMed |

Benchaib, M., Braun, V., Ressnikof, D., Lornage, J., Durand, P., Niveleau, A., and Guerin, J. F. (2005). Influence of global sperm DNA methylation on IVF results. Hum. Reprod. 20, 768–773.
Influence of global sperm DNA methylation on IVF results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSgtrk%3D&md5=9ee61eda13cb154e5c051fab104888eaCAS | 15640258PubMed |

Bourc’his, D., Le Bourhis, D., Patin, D., Niveleau, A., Comizzoli, P., Renard, J. P., and Viegas-Pequignot, E. (2001). Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546.
Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ms7o%3D&md5=a5f7a76df76818a4ea5c04c366df2a39CAS | 11591324PubMed |

Brouwers, J. F., and Gadella, B. M. (2003). In situ detection and localisation of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 35, 1382–1391.
In situ detection and localisation of lipid peroxidation in individual bovine sperm cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1equrg%3D&md5=9fd99b3ee3cfc51cbe921bd5967a8137CAS | 14642386PubMed |

Colombero, L. T., Moomjy, M., Sills, E. S., Rosenwaks, Z., and Palermo, G. D. (1999). The role of structural integrity of the fertilising spermatozoon in early human embryogenesis. Zygote 7, 157–163.
The role of structural integrity of the fertilising spermatozoon in early human embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzks1Kltg%3D%3D&md5=581aa88644fc1c896d7aa199a8f38d97CAS | 10418110PubMed |

De Iuliis, G. N., Thomson, L. K., Mitchell, L. A., Finnie, J. M., Koppers, A. J., Hedges, A., Nixon, B., and Aitken, R. J. (2009). DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodelling and the formation of 8-hydroxyl-2′-deoxyguanosine, a marker of oxidative stress. Biol. Reprod. 81, 517–524.
DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodelling and the formation of 8-hydroxyl-2′-deoxyguanosine, a marker of oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7%2FE&md5=4c63035f582c96ae059eb5b92db9658dCAS | 19494251PubMed |

Duran, E. H., Gurgan, T., Gunalp, S., Enginsu, M. E., Yarali, H., and Ayhan, A. (1998). A logistic regression model including DNA status and morphology of spermatozoa for prediction of fertilisation in vitro. Hum. Reprod. 13, 1235–1239.
A logistic regression model including DNA status and morphology of spermatozoa for prediction of fertilisation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czgvFOlug%3D%3D&md5=ef62b5ed76adfb030813daff81eea083CAS | 9647553PubMed |

Fernandes, C. E., Dode, M. A. N., Pereira, D., and Silva, A. E. D. F. (2008). Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro-fertilising ability. Theriogenology 70, 1560–1568.
Effects of scrotal insulation in Nellore bulls (Bos taurus indicus) on seminal quality and its relationship with in vitro-fertilising ability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjs1yntA%3D%3D&md5=6967dd15a9c0bb2721a8f29434f20decCAS | 18723216PubMed |

Franco, R., Schoneveld, O., Georgakilas, A. G., and Panayiotidis, M. I. (2008). Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 266, 6–11.
Oxidative stress, DNA methylation and carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFKksrw%3D&md5=0b0544f5e9a93b82ffc50cb78538d7e8CAS | 18372104PubMed |

Franco, J. G., Mauri, A. L., Petersen, C. G., Massaro, F. C., Silva, L. F. I., Felipe, V., Cavagna, M., Pontes, A., Baruffi, R. L. R., Oliveira, J. B. A., and Vagnini, L. D. (2012). Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int. J. Androl. 35, 46–51.
Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 21535011PubMed |

Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., Xie, Z. G., Shi, L. Y., He, X. Y., Jin, S. G., Iqbal, K., Shi, Y. J. G., Deng, Z. X., Szabo, P. E., Pfeifer, G. P., Li, J. S., and Xu, G. L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL7M&md5=82b204d35438ee166d73a70126f46ec0CAS | 21892189PubMed |

Hamamah, S., Fignon, A., and Lansac, J. (1997). The effect of male factors in repeated spontaneous abortion: lesson from in vitro fertilisation and intracytoplasmic sperm injection. Hum. Reprod. Update 3, 393–400.
The effect of male factors in repeated spontaneous abortion: lesson from in vitro fertilisation and intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7hvFeksA%3D%3D&md5=f9e56c8edb1976c2c0b1c27d74c1ce71CAS | 9459284PubMed |

Hammadeh, M. E., Strehler, E., Zeginiadou, T., Rosenbaum, P., and Schmidt, W. (2001). Chromatin decondensation of human sperm in vitro and its relation to fertilisation rate after ICSI. Arch. Androl. 47, 83–87.
Chromatin decondensation of human sperm in vitro and its relation to fertilisation rate after ICSI.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mrgs1CksA%3D%3D&md5=aedc6603f6abb537c958d95de66d77b2CAS | 11554688PubMed |

Hepburn, P. A., Margison, G. P., and Tisdale, M. J. (1991). Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J. Biol. Chem. 266, 7985–7987.
| 1:CAS:528:DyaK3MXmtVWgsb0%3D&md5=69d660e65dc7e05e606827ae9054168cCAS | 2022628PubMed |

Hou, J., Liu, L., Zhang, J., Cui, X. H., Yan, F. X., Guan, H., Chen, Y. F., and An, X. R. (2008). Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation. BMC Dev. Biol. 8, 60.
Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation.Crossref | GoogleScholarGoogle Scholar | 18507869PubMed |

Jenkins, T. G., and Carrell, D. T. (2012). The sperm epigenome and potential implications for the developing embryo. Reproduction 143, 727–734.
The sperm epigenome and potential implications for the developing embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFahs78%3D&md5=cd62909966369d1954a97923b1448874CAS | 22495887PubMed |

Johnson, L., Varner, D. D., Roberts, M. E., Smith, T. L., Keillor, G. E., and Scrutchfield, W. L. (2000). Efficiency of spermatogenesis: a comparative approach. Anim. Reprod. Sci. 60–61, 471–480.
Efficiency of spermatogenesis: a comparative approach.Crossref | GoogleScholarGoogle Scholar | 10844217PubMed |

Johnson, G. D., Lalancette, C., Linnemann, A. K., Leduc, F., Boissonneault, G., and Krawetz, S. A. (2011). The sperm nucleus: chromatin, RNA and the nuclear matrix. Reproduction 141, 21–36.
The sperm nucleus: chromatin, RNA and the nuclear matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehs74%3D&md5=c4ee98edced1dbe0d882a91a86c3f65bCAS | 20876223PubMed |

Jue, K., Benoit, G., Alcivar-Warren, A. A., and Trasler, J. M. (1995). Developmental and hormonal regulation of DNA methyltransferase in the rat testis. Biol. Reprod. 52, 1364–1371.
Developmental and hormonal regulation of DNA methyltransferase in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVGlsb4%3D&md5=f712c1304b286555aaaefd9aeba32ea0CAS | 7632844PubMed |

Kerjean, A., Dupont, J. M., Vasseur, C., Le Tessier, D., Cuisset, L., Pàldi, A., Jouannet, P., and Jeanpierre, M. (2000). Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum. Mol. Genet. 9, 2183–2187.
Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFKiurc%3D&md5=d26a6ff76098c58ad080641f82cc929fCAS | 10958657PubMed |

Lachner, M., and Jenuwein, T. (2002). The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.
The many faces of histone lysine methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSitr0%3D&md5=7c3e3656c02bc1865ec0ef226e146515CAS | 12067650PubMed |

Majić Balić, I. M., Milinković-Tur, S., Samardžija, M., and Vince, S. (2012). Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls. Theriogenology 78, 423–431.
Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls.Crossref | GoogleScholarGoogle Scholar |

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–502.
Demethylation of the zygotic paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShsbY%3D&md5=404666ed70181b55ed83d94803eb4904CAS | 10676950PubMed |

Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M., Tanaka, S., Shiota, K., and Nakano, T. (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64–71.
PGC7/Stella protects against DNA demethylation in early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2l&md5=db32e8091ec9bb2a6560737fd7d22bc6CAS | 17143267PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=ede497b16961b09a91f8edf834515c26CAS | 22722204PubMed |

Nanassy, L., and Carrell, D. T. (2011a). Abnormal methylation of the promoter of CREM is broadly associated with male-factor infertility and poor sperm quality but is improved in sperm selected by density-gradient centrifugation. Fertil. Steril. 95, 2310–2314.
Abnormal methylation of the promoter of CREM is broadly associated with male-factor infertility and poor sperm quality but is improved in sperm selected by density-gradient centrifugation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFWns7c%3D&md5=a4fdd7f52d2e6c7ee8fbe928b7f5b487CAS | 21507395PubMed |

Nanassy, L., and Carrell, D. T. (2011b). Analysis of the methylation pattern of six gene promoters in sperm of men with abnormal protamination. Asian J. Androl. 13, 342–346.
Analysis of the methylation pattern of six gene promoters in sperm of men with abnormal protamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVClsLY%3D&md5=82a65878a49bd034b65c81edbdd6c847CAS | 21196940PubMed |

Newton, L. D., Kastelic, J. P., Wong, B., Van der Hoorn, F., and Thundathil, J. (2009). Elevated testicular temperature modulates expression patterns of sperm proteins in Holstein bulls. Mol. Reprod. Dev. 76, 109–118.
Elevated testicular temperature modulates expression patterns of sperm proteins in Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtL3L&md5=7b6482a506eb36b041948f296f89dc29CAS | 18459118PubMed |

Ng, H. H., and Bird, A. (1999). DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163.
DNA methylation and chromatin modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFyqtL8%3D&md5=189a0c03763d6388dc64e956540563afCAS | 10322130PubMed |

Numata, M., Ono, T., and Iseki, S. (1994). Expression and localisation of the mRNA for DNA (cytosine-5)- methyltransferase in mouse seminiferous tubules. J. Histochem. Cytochem. 42, 1271–1276.
Expression and localisation of the mRNA for DNA (cytosine-5)- methyltransferase in mouse seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslKjtb4%3D&md5=77597b2fea144e64c42b4a9c792a8b52CAS | 8064134PubMed |

Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Gqsrc%3D&md5=00c7a0d521e9c8217e262c828f8272f2CAS | 10555141PubMed |

Omisanjo, O. A., Biermann, K., Hartmann, S., Heukamp, L. C., Sonnack, V., Hild, A., Brehm, R., Bergmann, M., Weidner, W., and Steger, K. (2007). DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer. Histochem. Cell Biol. 127, 175–181.
DNMT1 and HDAC1 gene expression in impaired spermatogenesis and testicular cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFyqsg%3D%3D&md5=a3229516a9f2b1af6b1dcb40ddec0ca3CAS | 16960727PubMed |

Ostermeier, G. C., Sargeant, G. A., Yandell, B. S., Evenson, D. P., and Parrish, J. J. (2001a). Relationship of bull fertility to sperm nuclear shape. J. Androl. 22, 595–603.
| 1:STN:280:DC%2BD38%2FitFaqsg%3D%3D&md5=670283e1468fecc0c4f3ce5e32f8d0a0CAS | 11451356PubMed |

Ostermeier, G. C., Sargeant, G. A., Yandell, B. S., and Parrish, J. J. (2001b). Measurement of bovine sperm nuclear shape using Fourier harmonic amplitudes. J. Androl. 22, 584–594.
| 1:STN:280:DC%2BD38%2FitFaruw%3D%3D&md5=288c86c503df8dcc1fd6a3f31551958fCAS | 11451355PubMed |

Park, J. S., Jeong, Y. S., Shin, S. T., Lee, K. K., and Kang, Y. K. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–2533.
Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjurfN&md5=391d58dbac8f746b2c03d18001a90f08CAS | 17676637PubMed |

Park, J. S., Lee, D., Cho, S., Shin, S. T., and Kang, Y. K. (2010). Active loss of DNA methylation in two-cell stage goat embryos. Int. J. Dev. Biol. 54, 1323–1328.
Active loss of DNA methylation in two-cell stage goat embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2gur3O&md5=363d49944bbb0554b51e929568eccd6aCAS | 20563995PubMed |

Rahman, M. B., Vandaele, L., Rijsselaere, T., Maes, D., Hoogewijs, M., Frijters, A., Noordman, J., Granados, A., Dernelle, E., Shamsuddin, M., Parrish, J. J., and Van Soom, A. (2011). Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein–Friesian and Belgian Blue bulls. Theriogenology 76, 1246–1257.
Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein–Friesian and Belgian Blue bulls.Crossref | GoogleScholarGoogle Scholar | 21777969PubMed |

Rahman, M. B., Vandaele, L., Rijsselaere, T., Zhandi, M., Maes, D., Shamsuddin, M., and Van Soom, A. (2012). Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa. Reprod. Fertil. Dev. 24, 608–618.
Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVKitbc%3D&md5=8691f515223406ce595005866b711515CAS | 22541549PubMed |

Reis e Silva, A. R., Adenot, P., Daniel, N., Archilla, C., Peynot, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2011). Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilisation. Epigenetics 6, 987–993.
Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1yjur8%3D&md5=a9b946034934507b017fe8a6d75256a4CAS |

Sakkas, D., Urner, F., Bianchi, P. G., Bizzaro, D., Wagner, I., Jaquenoud, N., Manicardi, G., and Campana, A. (1996). Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum. Reprod. 11, 837–843.
Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zisF2lsw%3D%3D&md5=3e38a472b618ffabf0d423395cc1b685CAS | 8671337PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=ffb980fea73f9ed5981382147a959cccCAS | 11784103PubMed |

Senner, C. E. (2011). The role of DNA methylation in mammalian development. Reprod. Biomed. Online 22, 529–535.
The role of DNA methylation in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGgtL0%3D&md5=e634140a1e59f54f2886a56a193fa64eCAS | 21498123PubMed |

Shiraishi, K., Takihara, H., and Matsuyama, H. (2010). Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis. World J. Urol. 28, 359–364.
Elevated scrotal temperature, but not varicocele grade, reflects testicular oxidative stress-mediated apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlynsLk%3D&md5=9ede1e0841315d503c729d6b9cdecad6CAS | 19655149PubMed |

Siddiqui, M. A. R. (2008). Sperm image analysis and in vitro tests for predicting bull fertility. Ph.D. Thesis, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Simões, R., Feitosa, W. B., Mendes, C. M., Marques, M. G., Nicacio, A. C., de Barros, F. R. O., Visintin, J. A., and Assumpção, M. E. O. A. (2009). Use of chromomycin A3 staining in bovine sperm cells for detection of protamine deficiency. Biotech. Histochem. 84, 79–83.
Use of chromomycin A3 staining in bovine sperm cells for detection of protamine deficiency.Crossref | GoogleScholarGoogle Scholar | 19306222PubMed |

Smallwood, S. A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42.
De novo DNA methylation: a germ cell perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2msA%3D%3D&md5=f4e578344ac605da9cb713cf883ea075CAS | 22019337PubMed |

Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S. R., and Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814.
Dynamic CpG island methylation landscape in oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotV2ht7g%3D&md5=58b8e21156c43bc41dbb6b88df30c1b1CAS | 21706000PubMed |

Surani, M. A. (1998). Imprinting and the initiation of gene silencing in the germ line. Cell 93, 309–312.
Imprinting and the initiation of gene silencing in the germ line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFCjt7s%3D&md5=811f61f23108d42983fc92967c5f01d7CAS | 9590162PubMed |

Surani, M. A., Hayashi, K., and Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762.
Genetic and epigenetic regulators of pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12isrw%3D&md5=8117d2906ec5a4819576b41ae0675fc9CAS | 17320511PubMed |

Tahiliani, M., Koh, K. P., Shen, Y. H., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=5f56451e2dea3cfe7b68e604fb2fca6bCAS | 19372391PubMed |

Trasler, J. M., Alcivar, A. A., Hake, L. E., Bestor, T., and Hecht, N. B. (1992). DNA methyltransferase is developmentally expressed in replicating and non-replicating male germ cells. Nucleic Acids Res. 20, 2541–2545.
DNA methyltransferase is developmentally expressed in replicating and non-replicating male germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1Ogur8%3D&md5=ebe8086df270303f8571e38e972eeae2CAS | 1598212PubMed |

Tunc, O., and Tremellen, K. (2009). Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J. Assist. Reprod. Genet. 26, 537–544.
Oxidative DNA damage impairs global sperm DNA methylation in infertile men.Crossref | GoogleScholarGoogle Scholar | 19876730PubMed |

Turk, P. W., Laayoun, A., Smith, S. S., and Weitzman, S. A. (1995). DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis 16, 1253–1255.
DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFSrs7g%3D&md5=ab04afe332427df1df49df8597b69395CAS | 7767994PubMed |

Valinluck, V., Tsai, H. H., Rogstad, D. K., Burdzy, A., Bird, A., and Sowers, L. C. (2004). Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108.
Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFagu78%3D&md5=76b666c9fc0d6c3ef41c632fc8daa352CAS | 15302911PubMed |

Vogler, C. J., Bame, J. H., DeJarnette, J. M., McGilliard, M. L., and Saacke, R. G. (1993). Effects of elevated testicular temperature on morphology characteristics of ejaculated spermatozoa in the bovine. Theriogenology 40, 1207–1219.
Effects of elevated testicular temperature on morphology characteristics of ejaculated spermatozoa in the bovine.Crossref | GoogleScholarGoogle Scholar |

Walters, A. H., Eyestone, W. E., Saacke, R. G., Pearson, R. E., and Gwazdauskas, F. C. (2004). Sperm morphology and preparation method affect bovine embryonic development. J. Androl. 25, 554–563.
| 15223844PubMed |

Walters, A. H., Eyestone, W. E., Saacke, R. G., Pearson, R. E., and Gwazdauskas, F. C. (2005). Bovine embryo development after IVF with spermatozoa having abnormal morphology. Theriogenology 63, 1925–1937.
Bovine embryo development after IVF with spermatozoa having abnormal morphology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M7ptFKqtw%3D%3D&md5=37a2be8eb7da634cc1ba464acad481c6CAS | 15823349PubMed |

Walters, A. H., Saacke, R. G., Pearson, R. E., and Gwazdauskas, F. C. (2006). Assessment of pronuclear formation following in vitro fertilisation with bovine spermatozoa obtained after thermal insulation of the testis. Theriogenology 65, 1016–1028.
Assessment of pronuclear formation following in vitro fertilisation with bovine spermatozoa obtained after thermal insulation of the testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287jtFWitQ%3D%3D&md5=2a19aca1a9217b5ba501d82e08fd11ecCAS | 16112184PubMed |

Ward, W. S. (2010). Function of sperm chromatin structural elements in fertilisation and development. Mol. Hum. Reprod. 16, 30–36.
Function of sperm chromatin structural elements in fertilisation and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOhtrrI&md5=94e9a74eb1960db83f6334a1f838a2a0CAS | 19748904PubMed |

Weitzman, S. A., Turk, P. W., Milkowski, D. H., and Kozlowski, K. (1994). Free-radical adducts induce alterations in DNA cytosine methylation. Proc. Natl. Acad. Sci. USA 91, 1261–1264.
Free-radical adducts induce alterations in DNA cytosine methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlOqtL8%3D&md5=5ae0c8778c6a5d72c1ed0876e828d4acCAS | 8108398PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |

Wu, S. C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620.
Active DNA demethylation: many roads lead to Rome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1egtbY%3D&md5=573d6d2523ff2e68397a6ce241c63819CAS | 20683471PubMed |

Yauk, C., Polyzos, A., Rowan-Carroll, A., Somers, C. M., Godschalk, R. W., Van Schooten, F. J., Berndt, M. L., Pogribny, I. P., Koturbash, I., Williams, A., Douglas, G. R., and Kovalchuk, O. (2008). Germ-line mutations, DNA damage and global hypermethylation in mice exposed to particulate air pollution in an urban–industrial location. Proc. Natl. Acad. Sci. USA 105, 605–610.
Germ-line mutations, DNA damage and global hypermethylation in mice exposed to particulate air pollution in an urban–industrial location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVajurw%3D&md5=73df2e43370f123108512112c3154884CAS | 18195365PubMed |

Zaitseva, I., Zaitsev, S., Alenina, N., Bader, M., and Krivokharchenko, A. (2007). Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol. Reprod. Dev. 74, 1255–1261.
Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfN&md5=0469f3f386c3b0cc31e251a7ec07b29dCAS | 17290422PubMed |