Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

EZH2 is essential for development of mouse preimplantation embryos

Xian-Ju Huang A , Xuguang Wang A B , Xueshan Ma A C , Shao-Chen Sun A , Xiaolong Zhou A , Chengcheng Zhu A and Honglin Liu D
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China.

B Animal Science College, Xinjiang Agricultural University, Nongda rode No.311, Wulumuqi, Xinjiang 830052, China.

C State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Peking University People’s Hospital, Beichen weste rode No.1, Chaoyang district, Beijing 100101, China.

D Corresponding author. Email: liuhonglin@263.net

Reproduction, Fertility and Development 26(8) 1166-1175 https://doi.org/10.1071/RD13169
Submitted: 6 June 2013  Accepted: 6 September 2013   Published: 24 October 2013

Abstract

Enhancer of zeste homologue 2 (Ezh2) is essential for the development of the early mouse preimplantation embryo. Loss of Ezh2 results in embryonic lethality in mice. Ezh2-deficient embryos display impaired outgrowth potential, defective establishment of Ezh2-null embryonic stem (ES) cells and adherence and differentiation of the trophoblast layer into giant cells. We investigated if Ezh2 controls the fate of embryos at an earlier stage by treating with cycloheximide (CHX) or microinjecting short interfering RNA (siRNA) to restrict embryonic Ezh2 expression during preimplantation. CHX inhibited de novo EZH2 protein synthesis in zygotes, suggesting that EZH2 requires de novo synthesis during post-fertilisation stages. We found that loss of Ezh2 at the pronuclear stage caused severe growth retardation and reduced blastocyst formation. Expression of the pluripotency-associated markers Oct4, Sox2 and Nanog were significantly decreased in embryos that had been injected with Ezh2 siRNA. In addition, Ezh2 loss induced upregulated expression of genes related to the differentiation of germ layers, including Gata6, Hoxb1 and Hand1. Finally, apoptosis was increased in the blastocyst embryos with Ezh2 knockdown. Modification of histone H3-Lysine 27 de-methylation and tri-methylation (H3K27me2/3) was strongly reduced in Ezh2 siRNA embryos. We conclude that Ezh2 is essential for early preimplantation embryo development through the regulation of epigenetic modification and apoptosis.

Additional keywords: de novo, growth retardation, histone modification.


References

Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.
Multipotent cell lineages in early mouse development depend on SOX2 function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlKqtg%3D%3D&md5=52a47b2691459ef966ce7d73c08190faCAS | 12514105PubMed |

Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., and Fisher, A. G. (2006). Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538.
Chromatin signatures of pluripotent cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGnurk%3D&md5=c01db4576fdcf6c0c3b87230bc64883eCAS | 16570078PubMed |

Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A., and Jaenisch, R. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.
Polycomb complexes repress developmental regulators in murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksleltLs%3D&md5=b7848422126d3fe3eb8b2b28a13fac93CAS | 16625203PubMed |

Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H., and Helin, K. (2006). Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136.
Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslCjsbs%3D&md5=60aa95deced6be9933439688efea3f0cCAS | 16618801PubMed |

Brison, D. R., and Schultz, R. M. (1997). Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol. Reprod. 56, 1088–1096.
Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2mu7Y%3D&md5=a77daa022476d3bbf3d634a66def175fCAS | 9160705PubMed |

Burton, A., and Torres-Padilla, M. E. (2010). Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief. Funct. Genomics 9, 444–454.
Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlelsr4%3D&md5=b000576bdf531092ce19d82433808e8fCAS | 21186177PubMed |

Cao, R., and Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164.
The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKktLY%3D&md5=0311fa384f00f8d5a81b4b879dc3b36cCAS | 15196462PubMed |

Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043.
Role of histone H3 lysine 27 methylation in polycomb-group silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot12rs7g%3D&md5=96c4aa81f6860087961e788d1a218a8dCAS | 12351676PubMed |

Chamberlain, S. J., Yee, D., and Magnuson, T. (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505.
Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFGhtb8%3D&md5=89a3a040dc1e9da1556445544ba2de16CAS | 18403752PubMed |

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency-sustaining factor in embryonic stem cells. Cell 113, 643–655.
Functional expression cloning of Nanog, a pluripotency-sustaining factor in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur8%3D&md5=54ed04395d7a47f702d3bae392597101CAS | 12787505PubMed |

Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196.
Drosophila enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotlahsr8%3D&md5=497e95b77a4710ceceaf837bae12df04CAS | 12408863PubMed |

Erhardt, S., Su, I. H., Schneider, R., Barton, S., Bannister, A. J., Perez-Burgos, L., Jenuwein, T., Kouzarides, T., Tarakhovsky, A., and Surani, M. A. (2003). Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248.
Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVWnt78%3D&md5=fc12c37ffd2b2d6597a04e58878d9d9fCAS | 12900441PubMed |

Ezhkova, E., Lien, W. H., Stokes, N., Pasolli, H. A., Silva, J. M., and Fuchs, E. (2011). EZH1 and EZH2 co-govern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25, 485–498.
EZH1 and EZH2 co-govern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslCitr4%3D&md5=22f675a367af7efc038e215f9cb0d9e5CAS | 21317239PubMed |

Faust, C., Schumacher, A., Holdener, B., and Magnuson, T. (1995). The eed mutation disrupts anterior mesoderm production in mice. Development 121, 273–285.
| 1:CAS:528:DyaK2MXjsl2ntr8%3D&md5=9bdb18eea92ff0061ef511b9d5a51331CAS | 7768172PubMed |

Francis, N. J., Saurin, A. J., Shao, Z., and Kingston, R. E. (2001). Reconstitution of a functional core polycomb repressive complex. Mol. Cell 8, 545–556.
Reconstitution of a functional core polycomb repressive complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGmtr8%3D&md5=9cb8836c076b2cae6bb3539e9152ae0bCAS | 11583617PubMed |

Grabarek, J. B., Zyzynska, K., Saiz, N., Piliszek, A., Frankenberg, S., Nichols, J., Hadjantonakis, A. K., and Plusa, B. (2012). Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development 139, 129–139.
Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFKnsro%3D&md5=5fe226b53562cfca13d940623a13bb75CAS | 22096072PubMed |

Hardy, K. (1997). Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3, 919–925.
Cell death in the mammalian blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FlsFKntg%3D%3D&md5=36bfe6cb981bc2b0be6803375c72189bCAS | 9395266PubMed |

Hardy, K., Stark, J., and Winston, R. M. (2003). Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol. Reprod. 68, 1165–1169.
Maintenance of the inner cell mass in human blastocysts from fragmented embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVert7s%3D&md5=921d1de414c30f8a93171355777ff424CAS | 12606492PubMed |

Inoue, A., and Aoki, F. (2010). Role of the nucleoplasmin 2 C-terminal domain in the formation of nucleolus-like bodies in mouse oocytes. FASEB J. 24, 485–494.
Role of the nucleoplasmin 2 C-terminal domain in the formation of nucleolus-like bodies in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Ghu70%3D&md5=a07187a2fbbe6a6974bb71ae281b630dCAS | 19805576PubMed |

Kamjoo, M., Brison, D. R., and Kimber, S. J. (2002). Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol. Reprod. Dev. 61, 67–77.
Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur8%3D&md5=df0a3e68f9472f5e8d96a5e56273cddaCAS | 11774377PubMed |

Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M., and Kimber, S. J. (2010). Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS ONE 5, e13952.
Sox2 is essential for formation of trophectoderm in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 21103067PubMed |

Koutsourakis, M., Langeveld, A., Patient, R., Beddington, R., and Grosveld, F. (1999). The transcription factor GATA6 is essential for early extra-embryonic development. Development 126, 723–732.
| 1:CAS:528:DyaK1MXhvFamsLc%3D&md5=80590b3818cf00c450c367c7e0b6c373CAS | 10383242PubMed |

Kuzmichev, A., Jenuwein, T., Tempst, P., and Reinberg, D. (2004). Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193.
Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyisb8%3D&md5=cec71fc2d2e10238e20492b4528b95b6CAS | 15099518PubMed |

Laible, G., Wolf, A., Dorn, R., Reuter, G., Nislow, C., Lebersorger, A., Popkin, D., Pillus, L., and Jenuwein, T. (1997). Mammalian homologues of the polycomb-group gene enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J. 16, 3219–3232.
Mammalian homologues of the polycomb-group gene enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlejs7g%3D&md5=4a6b37670c6a3acd329c29205f5016ddCAS | 9214638PubMed |

Min, J., Zhang, Y., and Xu, R. M. (2003). Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828.
Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Sjtrg%3D&md5=a7b744d0f855eef580ecb0ccdd3854b4CAS | 12897052PubMed |

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur4%3D&md5=a7626a1a9d159cbb2bdfc206e4715f9fCAS | 12787504PubMed |

Montgomery, N. D., Yee, D., Chen, A., Kalantry, S., Chamberlain, S. J., Otte, A. P., and Magnuson, T. (2005). The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol. 15, 942–947.
The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Gjt7k%3D&md5=69897a593072b1461ed8f4a15ff183a0CAS | 15916951PubMed |

Müller, J., Hart, C. M., Francis, N. J., Vargas, M. L., Sengupta, A., Wild, B., Miller, E. L., O’Connor, M. B., Kingston, R. E., and Simon, J. A. (2002). Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208.
Histone methyltransferase activity of a Drosophila polycomb group repressor complex.Crossref | GoogleScholarGoogle Scholar | 12408864PubMed |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=2e00519f764d478708910b723ee3da0aCAS | 9814708PubMed |

O’Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., and Jenuwein, T. (2001). The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336.
The polycomb-group gene Ezh2 is required for early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOrtL8%3D&md5=e48faf62286dcc770f93ccfbc21b6febCAS | 11390661PubMed |

Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071.
Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlCrs74%3D&md5=87032b1b75bb888bb65367ec05eb5b6eCAS | 15385962PubMed |

Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M., and Helin, K. (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779.
The polycomb group protein Suz12 is required for embryonic stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlant7w%3D&md5=5cae5352ea5b080ff18d25248dbbf1f5CAS | 17339329PubMed |

Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K., Brykczynska, U., Kolb, C., Otte, A. P., Koseki, H., Orkin, S. H., van Lohuizen, M., and Peters, A. H. (2008). PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420.
PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslCgur8%3D&md5=56ec45884841bf15e9580d0d2f0e93d9CAS | 18311137PubMed |

Santos, F., Peters, A. H., Otte, A. P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236.
Dynamic chromatin modifications characterise the first cell cycle in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1equrY%3D&md5=a4b0c0d995fe5275dbdb51cfa2aa3df1CAS | 15766761PubMed |

Schöler, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N., and Gruss, P. (1989). Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J. 8, 2551–2557.
| 2573524PubMed |

Senner, C. E., and Hemberger, M. (2010). Regulation of early trophoblast differentiation – lessons from the mouse. Placenta 31, 944–950.
Regulation of early trophoblast differentiation – lessons from the mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbhvFenuw%3D%3D&md5=f5e302337c7a90c552f4cf0c10b2225eCAS | 20797785PubMed |

Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J. R., Wu, C. T., Bender, W., and Kingston, R. E. (1999). Stabilisation of chromatin structure by PRC1, a polycomb complex. Cell 98, 37–46.
Stabilisation of chromatin structure by PRC1, a polycomb complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1KksbY%3D&md5=af6b613e9a87805ca3aed32eb950ff24CAS | 10412979PubMed |

Simon, J. A., and Kingston, R. E. (2009). Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10, 697–708.
| 1:CAS:528:DC%2BD1MXhtV2qtL%2FO&md5=1e60f945f882506c26da0f9aa17189d4CAS | 19738629PubMed |

Surface, L. E., Thornton, S. R., and Boyer, L. A. (2010). Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7, 288–298.
Polycomb group proteins set the stage for early lineage commitment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrurnK&md5=2380297d5c02c7b91f3f11159643e265CAS | 20804966PubMed |

Ura, H., Usuda, M., Kinoshita, K., Sun, C., Mori, K., Akagi, T., Matsuda, T., Koide, H., and Yokota, T. (2008). STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells. J. Biol. Chem. 283, 9713–9723.
STAT3 and Oct-3/4 control histone modification through induction of Eed in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1aksLc%3D&md5=45e3a807d92b79736ab8c56186fbb1f5CAS | 18201968PubMed |

van der Heijden, G. W., Dieker, J. W., Derijck, A. A., Muller, S., Berden, J. H., Braat, D. D., van der Vlag, J., and de Boer, P. (2005). Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 122, 1008–1022.
Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVGjtr4%3D&md5=4d7e3a9f76c633db7e9910c55cae34f4CAS | 15922569PubMed |

van der Vlag, J., and Otte, A. P. (1999). Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat. Genet. 23, 474–478.
Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOkurs%3D&md5=5ecc05c258106bb270cd54371fb3232fCAS | 10581039PubMed |

Wang, L., Jin, Q., Lee, J. E., Su, I. H., and Ge, K. (2010). Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl. Acad. Sci. USA 107, 7317–7322.
Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVynsbo%3D&md5=aec77f242c416ad1628604310609144aCAS | 20368440PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |

Yoo, K. H., and Hennighausen, L. (2012). EZH2 methyltransferase and H3K27 methylation in breast cancer. Int. J. Biol. Sci. 8, 59–65.
EZH2 methyltransferase and H3K27 methylation in breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1altQ%3D%3D&md5=cad3951dfe04ea3996cfa0902d20f707CAS | 22211105PubMed |

Zhang, M., Wang, F., Kou, Z., Zhang, Y., and Gao, S. (2009). Defective chromatin structure in somatic cell cloned mouse embryos. J. Biol. Chem. 284, 24 981–24 987.
Defective chromatin structure in somatic cell cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2nsLbI&md5=685958c100f54ad7676fc56f2c62dd3cCAS |